• 제목/요약/키워드: Electron beam accelerator

검색결과 161건 처리시간 0.029초

Comparison of Quality of Bologna Sausage Manufactured by Electron Beam or X-Ray Irradiated Ground Pork

  • Shin, Mee-Hye;Lee, Ju-Woon;Yoon, Young-Min;Kim, Jong Heon;Moon, Byeong-Geum;Kim, Jae-Hun;Song, Beom-Suk
    • Food Science of Animal Resources
    • /
    • 제34권4호
    • /
    • pp.464-471
    • /
    • 2014
  • Ground lean pork was irradiated by an electron beam or X-rays to compare the effects of two types of radiation generated by a linear accelerator on the quality of Bologna sausage as a model meat product. Raw ground lean pork was vacuum packaged at a thickness of 1.5 cm and irradiated at doses of 2, 4, 6, 8, or 10 kGy by an electron beam (2.5 MeV) or X-rays (5 MeV). Solubility of myofibrillar proteins, bacterial counts, and thiobarbituric acid reactive substance (TBARS) values were determined for raw meat samples. Bologna sausage was manufactured using the irradiated lean pork, and total bacterial counts, TBARS values, and quality properties (color differences, cooking yield, texture, and palatability) were determined. Irradiation increased the solubility of myofibrillar proteins in a dose-dependent manner (p<0.05). Bacterial contamination of the raw meat was reduced as the absorbed dose increased, and the reduction was the same for both radiation types. Differences were observed only between irradiated and non-irradiated samples (p<0.05). X-ray irradiation may serve as an alternative to gamma irradiation and electron beam irradiation.

Effects of Electron-Beam Irradiation on Lipid Stability of Ginseng (Electron Beam 조사가 인삼분말의 지방질 안정성에 미치는 영향)

  • Lee, Mi-Kyung;Choi, Kang-Ju;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • 제29권1호
    • /
    • pp.49-54
    • /
    • 2005
  • Electron beam (EB), electrically produced from an electron accelerator, was compared with gamma ray (GR) in terms of its influence at doses from 0 to 15 kGy on the lipid stability of white and red ginseng powders. Irradiation (EB or GR) less than 10 kGy showed negligible effects on the composition of fatty acids in white and red ginseng powders. The thiobarbituric acid (TBA) value, however, increased with irradiation doses and storage time in both samples, which was more significant in red ginseng than white ginseng. Red ginseng revealed higher electron donating ability than white ginseng, even though there was insignificant difference between non-irradiated and irradiated samples irrespective of the post-irradiation storage for 4 months under room temperature as well as energy sources applied.

A Study on Photoneutron Characteristics Generated from Target and Collimator of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적과 조준기에서 발생한 광중성자 특성에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • 제14권4호
    • /
    • pp.455-465
    • /
    • 2020
  • The purpose of this study is to evaluate the photoneutron characteristics generated by the linear accelerator target and collimator. The computer simulation design firstly, consisted of a target, a single material target and a composite material target. Secondly, it consisted of a cone beam and a fan beam depending on the type of the collimator. Finally, the material of the fan beam collimator is composed of a single material composed of only lead (Pb) and a composite material collimator composed of tungsten (W) and lead (Pb). The research method calculated the photoneutron production rate and energy spectrum using F2 tally from the surface of a virtual sphere at a distance of 100 cm from the target. As a result, firstly the photoneutron production rate was 20% difference, depending on the target. Secondly, depending on the type of the collimator, there was a 10% difference. Finally, depending on the collimator material, there was a 40% difference. In the photoneutron energy spectrum, the average photoneutron flux tended to be similar to the photoneutron production rate. As a result, it was confirmed that the 9 MeV linear accelerator photoneutron are production increased more by the collimator than by the target, and by the material, not the type of the collimator. Selecting and operating targets and collimator with low photoneutron production will be the most active radiation protection. Therefore, it is considered that this research can be a useful data for introducing and operating and radiation protection of a linear accelerator for container security inspection.

The Emission and Characteristics Measurement of Electron Beam and Basis Construction for Education Usage (전자빔 인출 및 빔 계측과 교육 활용을 위한 기반구축)

  • Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • 제11권4호
    • /
    • pp.257-264
    • /
    • 2007
  • The MM22 microtron has used as a cancer therapy machine from Nov. 1986 to Feb. 2006. This machine was moved and installed to a radiation research center to use as an education and research tool from treatment machine because of aging of MM22 microtron. In this paper, for extracting the electron beam from microtron, operation principle of the microtron, system characteristics of each module, and pulse structures were reviewed. The beam extraction and measurement were performed after measuring pulses of each major module and extraction trials in the beam line. After finishing the movement of MM22 microtron, the 30mA target current in the case of 10 MV X-ray beam was extracted and the beam flatness of radiation distribution was acquired within 3% error ratio after 100 MU was irradiated on X-omatV Film at SSD 100 cm and field size $10{\times}10cm^2$. As a result, the microtron movement and new installation was performed with success.

  • PDF

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • 제40권1호
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Design and Application of Acrylic Electron Wedge for Improving Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 acrylic electron wedge의 제작 및 사용)

  • Kim, Young-Bum;Kwon, Young-Ho;Whang, Woong-Ku;Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • 제21권2호
    • /
    • pp.36-42
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20%$) at the region of junction of fields. In this study, we made Acrylic Electron Wedges to improve dose inhomogeneities(${\pm}5%$) in these junction areas and to apply it to clinical practices. All measurements were made using 6, 9, 12, 16, 20 MeV Electron beams from a linear accelerator for a $10{\times}10\;cm$ field at 100cm of SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm acquires central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance according to the acryl insert, e.g. a 1 mm thick acryl insert reduces the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced to approximately 0.2 MeV. These effects were almost Independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase(less than 3%) in the surface dose and a small increase(less than 1%) in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction at the point of penumbra width($35\;mm{\sim}40\;mm$). We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be used to improve dose uniformity at electron field junctions and it will be effectively applied to clinical practices.

  • PDF

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제10권1호
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

Determination of Electron Beam Output Factors of Individual Applicator for ML-15MDX Linear Accelerator (선형가속기 ML-15MDX의 각 Applicator에 대한 전자선 출력선량 계수 결정)

  • Park, Tae-Jin;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • 제5권1호
    • /
    • pp.87-99
    • /
    • 1994
  • Purpose : The determination of electron beam output factor was investigated from individual applicator for various energy of ML-15MDX linear accelerator. The output factor of electron beam was extended from square to rectangular field in individual applicator size through with a least-square fit to a polynomial expression. Materials : In this experiments. the measurement of output was obtained from 2${\times}$cm$^2$ to 20${\times}$20cm$^2$ of field size in different applicator size for 4 to 15 MaV electron beam energy. The output factor was defined as the ratio of maximum dose output on the central axis of the field of individual applicator size to that of a given field size. Applicator factors were derived from comparing with the output dose of reference field size 10${\times}$10cm$^2$. The thickness of block was specially designed as 10mm in thickness of Lipowitz metal for field shaping in all electron energy. Two types of output curves are included as output factors versus side of square fields and that of variable side length for X and Y in one-dimensional to compare the expected values to that of experiments. Results : Expected output factors of rectangular which was derived from that of square fields in individual applicator size from 2${\times}$2cm$^2$ to 20${\times}$20cm$^2$ in different electron energy was very closed to that of experimental measurements within 2% uncertainty. However 1D method showed a 3% discrepancy in small rectangular field for low energy electron beam. Conclusion : Emperical non-linear polynomial regressions of square root and 1D method were performed to determin the output factor in various field size and electron energy. The expected output of electron beam of square root method for square field and 1D method for rectangular field were very closed to that of measurement in all selected electron beam energy.

  • PDF

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • 제10권1호
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • 제19권4호
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF