• Title/Summary/Keyword: Electron Flow

Search Result 675, Processing Time 0.033 seconds

Thermoluminescence Kinetics of LYGBO Crystal (LYGBO 단결정의 열형광 전자포획준위 인자)

  • Sunghwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • In this study, the thermoluminescence kinetics of electron trap in Li6Y0.5Gd0.5(BO3)3 (LY0.5G0.5BO) scintillator for neutron detection composed of Li, Gd, and B with a high neutron response cross-section were investigated. The thermoluminescence glow curve of the LY0.5G0.5BO scintillation single crystal was measured and analyzed using the peak shape method, the initial rise method, and the machine learning algorithm to evaluate the physical parameters of the electron trap. The glow curve of the LY0.5G0.5BO scintillation single crystal consisted of a single peak. As a result of analyzing this peak, the activation energy, emission order, and frequency factor of the electron trap were 0.61 eV, 1.1, and 1.7×107 s-1, respectively. In addition, the possibility of thermoluminescence analysis of scintillators using machine learning was confirmed.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Electrical & Electronic Materials
    • /
    • v.15 no.9
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF

A study of the hollow cathode discharge (HOLLOW CATHODE DISCHARGE의 방전 특성 연구)

  • Cho, S.M.;Seo, Y.W.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.139-141
    • /
    • 1989
  • The characteristics of the hollow cathode discharge were investigated. Temperature distribution of the hollow cathode was investigated and I-V curves of the hollow cathode discharge were obtained. In this paper variables are chamber pressure, Ar gas flow rate injected through the cathode tube and the gap distance between cathode and anode. The inter electrode electron temperature and density were measured by Langmuir probe.

  • PDF

Study for photoconduction mechanism of a single ZnO nanowire (단일 ZnO 나노선의 광전도 메카니즘에 대한 연구)

  • Keem, Ki-Hyun;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.60-61
    • /
    • 2005
  • Electrodes were fabricated on a single ZnO nanowire by photolithography process, metal evaporation, and lift-off. The slow photoresponses of the ZnO nanowire under the continuous illumination of 325nm-wavelength light (corresponding to above-bandgap excitation) indicate that the traps related to oxygen vacancy disturb the flow of electron in ZnO nanowire. The photoresponse and PL spectra were measured, and observed that the excitonic band in the PL spectrum was absent in the photoresponse.

  • PDF

Variation of Mechanical Properties with Powder Spraying Conditions in Mo and Co Alloy (Mo 및 Co계 분말의 용사조건에 따른 기계적 특성 변화)

  • 하국현
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.201-207
    • /
    • 1995
  • In general, the characteristics of plasma spray coating are strongly dependent on process conditions. In this paper, Mo and Co alloy coating layers were made by plasma spraying with different spray parameters and characterized using X-ray diffraction, scanning electron microscopy(SEM), hardnass test, and wear test. It was found that the coating characteristics were mainly affected by phase composition of the powder, spray distance, arc current, and gas flow rate.

  • PDF

Prediction of Intrinsic Pore Properties of Ultrafiltration Membrane by Solute Rejection Curves (용질배제 곡선에 의한 한외여과 막의 세공특성 예측)

  • 염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.4-8
    • /
    • 1991
  • The characterization of pore properties (mean pore size and pore size distribution) of the active layer in a UF membrane is important not only in order to obtain information about the factors affecting pore formation during membrane manufacturing but also to understand deeply the mechanism of solute and solvent transport through pores. Many methods of characterizing quantitatively the pore properties of UF membranes have been suggested in the literature: solvent and gas flow measurement, bubble point determination, electron microscopy, gas adsorption/desorption measurement, rejection measurement etc. But most of these methods involve time-consuming procedures and involve some wellknown problems and uncertainties.

  • PDF

PWN SED modeling: stationary and time-dependent leptonic scenarios

  • Kim, Seung-jong;An, Hong-jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2018
  • We develop a model for broadband spectral energy distribution (SED) of Pulsar Wind Nebulae (PWNe). The model assumes that electrons/positrons in the pulsar wind are injected into and stochastically accelerated in the pulsar termination shock. We consider two scenarios: a stationary one-zone case and a time-evolving multi-zone case. In the latter scenario, flow properties in the PWNe (magnetic field, bulk speed) are modeled to vary in time and space. We apply the model to the broadband SED of the pulsar wind nebula 3C 58. From the modeling, we find that a broken power-law injection is required with the maximum electron energy of ~200 TeV.

  • PDF

A Basic Study on X-ray Controlled Semiconductor Switch for Pulse Power (펄스파워용 X선제어 무도체스위치의 기본연구)

  • Ko, Kwang-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1013-1020
    • /
    • 1992
  • The conductivity variation of a high resistivity bulk silicon semiconductor, whose electrodes were deposited with aluminum vapor, was studied experimentally by measuring the X-ray intensity and current flow, which was developed by X-ray radiation while applying a pulse voltage to the silicon, in a load resistor connected to the semiconductor. The current flow observed immediately as the X-ray radiated, and when the X-ray decreased. It was found from the observation of switching current for the X-ray intensity and the voltage applied in the semiconductor that the switching current of the semiconductor increased as the intensity of the X-ray and the applied voltage increased. In case of lower applied voltage, the switching current for higher applied voltage depended on the intensity of the X-ray radiated due to the saturation of electron and hole.

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}-BONDINGS,\;{\pi}-FAR$ INFRARED RAYS AND N-MACHINE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.34-44
    • /
    • 1996
  • N-machine produces more than input energy at above 3000 rpm. any space energy is absorbed when the N-machine is rotating at a very high velocity. Laws of electromagnetics verify that normal conduction is due to that electrons moves from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next. The ${\pi}-far$ infrared rays are generated from the resonance and rotation of the electrons on the orbitals of three-dimensional crystallizing ${\pi}-bonding$ atoms. Material in universe is composed of ${\pi}-rays$, which have alternative outward electric field. If the alternative outward electric fields of the ${\pi}-rays$ are resonant each other they make attraction force, which is the gravity. The collection of space energy is due to a attraction force between the radially alternating electric field and the ${\pi}-far$ infrared rays in the space. Electrons flow by absorbed density difference of ${\pi}-far$ infrared rays along a conduction wire, which also verifies that normal electron conduction is due to a flow from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next.

  • PDF

Synthesis of fiber-textured diamond films by MWPECVD (마이크로파 플라즈마 CVD법에 의한 섬유집합조직 다이아몬드막의 합성)

  • 박재철;김병상
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.470-475
    • /
    • 1996
  • Fiber-textured diamond films have been deposited on scratched silicon(100) substrate by micro wave .plasma enhanced chemical vapor deposition at the condition of micro wave power : 950 W, pressure : 60 torr, H$_{2}$ gas flow rate : 50 sccm, CH$_{4}$ gas flow rate : 1.5 sccm, substrate temperature : about 900.deg. C and deposition time : 20 hours. The films were characterized by mean of scanning electron microscopy, Raman spectroscopy and X-ray analysis.

  • PDF