• Title/Summary/Keyword: Electron Beam Melting

Search Result 56, Processing Time 0.031 seconds

A Study on Refining and Melting of V by Electron Beam Melting (전자선 용해법에 의한 V의 정련 및 용해에 관한 연구)

  • Kim, Hwi-Joon;Baik, Hong-Koo;Yun, Woo-Young;Lee, Zin-Hyoung;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.235-241
    • /
    • 1995
  • In order to improve the production process of low cost and high purity Vanadium, this study was done to reduce $V_2O_5$ into V-Al master alloy by Aluminothermic Reduction, followed by refining of V-Al master alloy electron beam melting. As melting time was increased in electron beam melting of V, the contents of interstitial impurities and Al, Fe were decreased but the contents of Si, Mo and W were increased due to lower vapor pressure of these elements than that of matrix V. Consequently, it was profitable that melting of V was done for 180 seconds. In addition, with number of melting, the purity of V did not significantly vary, because volatile impurities in V were removed mostly during the first step of melting. As a result of V refining by electron beam melting, high purity Vanadium of 3N(99.91wt%) was acquired including interstitial impurities total contents of which were maximum 400ppm.

  • PDF

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Refining of Invar and Permalloy Fe-Ni Alloys by $Ar/Ar-H_2$ Plasma and Electron Beam Melting (Ar/Ar-$H_2$ 플라즈마 및 전자선 용해에 의한 인바 및 퍼멀로이 Fe-Ni 합금의 정련)

  • Park, Byung-Sam;Baik, Hong-Koo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.175-183
    • /
    • 1995
  • It is difficult to remove such interstitial impurities as sulfur, oxygen, hydrogen and carbon in Fe-Ni alloys. Thermodynamic and kinetic studies were carried out on the behavior of hydrogen gas, oxygen gas, Si, Al and slag, and the reaction time by the $Ar/Ar-H_2$ plasma and electron beam melting. After the addition of Al, Si, they were melted by Ar plasma with reaction time changed. 80%Ni-Fe alloys showed a better deoxidation than 36%Ni-Fe alloys. At $Ar-H_2$ plasma melting, the deoxidation was significant. In the case of the electron beam melting, the residual oxygen was higher than in Ar plasma melting because electron beam melting temperature was lower than that of Ar plasma. For the decaburization, it was melted by $Ar-O_2$ plasma melting, which could remove effectively carbon by activated oxygen in plasma. We added slag to Fe-Ni alloys for the desulfurization. As the result of this experiments, the amount of residual sulfur was not changed according to the slag ratio and reaction time.

  • PDF

Status Quo of Powder Bed Fusion Metal Additive Manufacturing Technologies (Powder Bed Fusion 방식 금속 적층 제조 방식 기술 분석)

  • Hwang, In-Seok;Shin, Chang-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.10-20
    • /
    • 2022
  • Recently, metal additive manufacturing (AM) is being investigated as a new manufacturing technology. In metal AM, powder bed fusion (PBF) is a promising technology that can be used to manufacture small and complex metallic components by selectively fusing each powder layer using an energy source such as laser or an electron beam. PBF includes selective laser melting (SLM) and electron beam melting (EBM). SLM uses high power-density laser to melt and fuse metal powders. EBM is similar to SLM but melts metals using an electron beam. When these processes are applied, the mechanical properties and microstructures change due to the many parameters involved. Therefore, this study is conducted to investigate the effects of the parameters on the mechanical properties and microstructures such that the processes can be performed more economically and efficiently.

The Effect of Electron Beam Irradiation on Discoloration and Thermal Property of HDPE Filled with Antioxidants and UV Stabilizers (전자선 조사에 따른 산화방지제 및 자외선안정제 첨가 HDPE의 변색 영향과 열적 특성 분석)

  • Jeun, Joon Pyo;Jung, Seung Tae;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this study, we fabricated high density polyethylene (HDPE) composites filled with antioxidants and UV stabilizers. The electron beam irradiation on the fabricated composites was carried out over a range of absorbed doses from 50 to 200 kGy to confirm the changes of discoloration. The changes of discoloration were characterized using a color difference meter and FT-IR for confirming the changes of the color difference and structural change. It was observed that the color difference of IRGANOX 1010-, IRGAFOS 168-, and TINUVIN 328- added HDPE was higher than that of the control HDPE by electron beam irradiation. The melting temperature of UV stabilizer-added HDPE was not significantly changed by electron beam irradiation. However, the melting temperature of phenol-containing antioxidant-added HDPE was increased with increasing the absorbed dose. And the melting temperature of phosphorus-containing antioxidant-added composite was decreased with increasing the absorbed dose.

Finite Element Analysis of Large-Electron-Beam Polishing-Induced Temperature Distribution (대면적 전자빔 폴리싱 공정 시 발생하는 온도 분포 유한요소해석 연구)

  • Kim, J.S.;Kim, J.S.;Kang, E.G.;Lee, S.W.;Park, H.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.931-936
    • /
    • 2013
  • Recently, the use of large-electron-beam polishing for polishing complex metal surfaces has been proposed. In this study, the temperature induced by a large electron beam was predicted using the heat transfer theory. A finite element (FE) model of a continuous wave (CW) electron beam was constructed assuming Gaussian distribution. The temperature distribution and melting depth of an SUS304 sample were predicted by changing electron-beam polishing process parameters such as energy density and beam velocity. The results obtained using the developed FE model were compared with experimental results for verifying the melting depth prediction capability of the developed FE model.

Volume Resistivity Characteristics of Low Density Polyethylene film irradiated with Electron Beam (전자선 조사된 저밀도 폴리에틸렌 박막의 체적고유저항 특성)

  • Cho, Don-Chan;Cho, Kyung-Soon;Lee, Soo-Won;Kim, Wang-Kon;Hong, Jin-Wooog
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.193-195
    • /
    • 1996
  • Low-density polyethylene(LDPE ; thickness 100[${\mu}m$] as a experimental specimen is irradiated with electron beam by using electron beam accelerator, and as an experimental specimen, the nonirradiated specimen and the specimen irradiated with electron beam is produced according to the classification of dose. From the analysis of DSC, the crystalline melting point of the specimen irradiated with electron beam is lower than that of virgin specimen. It is confirmed thai the volume resistivity is increased from the temperature over $50[^{\circ}C]{\sim}60[^{\circ}C]$ to the crystalline melting point because of the defects of solid structure and the formation of many trap centers by means of electron beam irradiation, but decreased in the temperature over the crystalline melting point because of the melt of crystalline.

  • PDF

Purification and Single Crystal Growth of Molybdenum by Electron Beam Floating Zone Melting (Electron Beam Floating Zone Melting에 의한 몰리브덴의 정련 및 단결정 성장에 관한 연구)

  • 최용삼;지응준
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.85-97
    • /
    • 1992
  • EBFZM( Electron Beam Floating Zone Melting) 법을 이용하여 몰리브덴에서의 금속계 불순물과 침입형 불순물의 정련기구 및 단결정 성장기구를 연구하 였다. Fe, Cr, Co등의 금속계 불순물은 몰리브덴과의 평형증기압의 차이에 따른 불순물의 선택적 증발에 의하여 우수한 정련효과를 나타내며, 몰리브덴보다 응점이 높은 Ta, W는 잘 제거되지 않았다. 한편 대역 정제에 의한 정련효과는 미약함을 확인하였다. EBF ZM은 C,0,N등의 침입형 불순물의 정련에도 효과적 이었다. 본 연구의 모든 조건에서 몰리브덴은 단결정으로 성장하였으며 2차 재결정 epitaxy에 의한 단결 정 성장기구가 제시되었다. 몰리브덴 단결정 내의 전 위밀도는 strain-anneal법에 의한 단결정의 경우보다 높았으며,본 실험의 열처리 조건에서는 변화하지 않았다. The purification and single crystal growth mechanisms of molybdenum were analysed in EBFZM ( electron beam floating zone melting). Metallic impurities of Fe, Cr, Co were purified efficiently but Ta and W were not removed well in this study. It was due to a preferential evaporation of the elements caused by the difference in equillibrium vapor pressure between the elements and molybdenum. The pu- rification effect by zone refining was not significant. The EBFZM also refined the interstitial impurities of C, 0 and N, effectively. The single crystals of molybdenum were grown regardless of the experimental conditions and the secondary recrystallization epitaxy was surge sled as a growth mechanism. The dislocation density in single crystal was higher than that by strain-anneal method, and was not reduced by heat treatments.

  • PDF