• Title/Summary/Keyword: Electromotive force

Search Result 206, Processing Time 0.022 seconds

Fabrication of the thermopile using SOI structure (SOI 구조를 이용한 열전쌍열(Thermopile) 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this paper, a thermopile which is applied to wide uses of temperature measuring was fabricated and its characteristic was improved by appling SOI structure to the fabrication. We improved characteristic of the thermopile by using single crystal silicon strips that has high seebeck coefficient and dielectric isolating the silicon strips from substrate with silicon dioxide film which dramatically decrease thermal conductivity between hot and cold junction compared to a silicon strip which was fabricated by ion implantation. The thermopile consists of 17 p-type single crystal silicon strips and 17 n-types by serial connection. The result of electromotive force measuring showed very good characteristic as 130mV/K when temperature difference between the two ends of the thermopile occurs by applying light on the thermopile fabricated with silicon strips of $1600{\mu}m$ length, $40{\mu}m$ width, $1{\mu}m$ thickness.

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링)

  • Lee, Chun-Gi;Hwang, Jeong-Won;Lee, Joung-Tae;Yang, Bin;Lim, Dong-Keun;Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

Study on a Separator for the All-vanadium Redox Flow Battery (바나듐 레독스-흐름 전지용 격막에 관한 연구)

  • Lee, Sang-Ho;Kim, Joeng-Geun;Choi, Sang-Il;Hwang, Gab-Jin;Jin, Chang-Soo
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2009
  • The cation exchange membrane using the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane property of the prepared cation exchange membrane was measured. The thermal stability of the prepared cation exchange analyzed by TG showed a more stable than that of Nafion117. The lowest measured membrane resistance, equilibrated in 1mol/L $H_2SO_4$ aqueous solution, $0.96{\cdot}cm^2$ at 3 cc of CSA (chlorosulfuricacid) which was introduction agent of ion exchange group. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. Electromotive force in 100% of state of charge was 1.4 V which was that of all-vanadium redox flow battery, and cell resistance in charge and discharge at each state of charge had a low value compared with that of all-vanadium redox flow battery using Nafion117.

Development of a Portable and Disposable pH Sensor Based on Titanium Wire with High Electrochemical Sensing Performance (우수한 전기화학적 센싱 성능을 지닌 티타늄 와이어 기반의 휴대 및 일회용 pH 센서 개발)

  • Yoon, Eun Seop;Yoon, Jo Hee;Son, Seon Gyu;Kim, Seo Jin;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.700-705
    • /
    • 2021
  • A portable and disposable pH sensor based on Ti wire was successfully developed for monitoring hydronium ion concentrations. A sensing electrode was prepared by electrochemically depositing iridium oxide onto a Ti wire, while a reference electrode was fabricated by coating Ag/AgCl ink on a Ti wire. Combining the two electrodes in the pH sensor enabled the collection of open circuit potential signals when the sensor was immersed in solutions of various pH values. The pH sensor exhibited excellent electrochemical sensing performance in terms of sensitivity, response time, repeatability, selectivity, and stability. To demonstrate point-of-measurement applications, the pH sensor was integrated with a wireless electronic module that could communicate with a mobile application. The portable pH sensor accurately measured pH changes in real samples. The results obtained were consistent with those of using a commercial pH meter.

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding (전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구)

  • Lee, Jun-yong;Lee, Hun-jo;Oh, Hwa-suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System (핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구)

  • Kim, Sungjae;Lee, Euibum;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.