• Title/Summary/Keyword: Electromechanical strains

Search Result 9, Processing Time 0.026 seconds

Prevalence and Genetic Characteristics of Japanese Encephalitis Virus among Mosquitoes and Pigs in Hunan Province, China from 2019 to 2021

  • Tang, Qiwu;Deng, Zaofu;Tan, Shengguo;Song, Guo;Zhang, Hai;Ge, Lingrui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1120-1125
    • /
    • 2022
  • Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is an importantly zoonotic, vector-borne virus widely prevalent in Asia. Although JE has been well controlled in China, its prevalence remains a huge threat to the pig industry as well as human health. Herein, we report on our molecular and serological investigations of JEV among pigs from different regions in Hunan Province of China from 2019 to 2021. Collectively, 19.27% (583/3026, 95% Confidential Interval (CI) 17.86-20.68) of sampled pigs were positive for JEV IgG antibody as revealed by indirect enzyme-linked immunosorbent assay, and the seroprevalence of JEV among pigs was significantly associated with the development stage and breeding scale (p < 0.01). Meanwhile, 10.99% (42/382, 95% CI 7.86-14.13) of tissue samples of pigs with suspected clinical symptoms of JE and 23.44% (15/64, 95% CI 13.06-33.82) of mosquito batches were JEV-positive via reverse polymerase chain reaction. In addition, the complete E gene sequences of 14 JEV strains identified in this study were amplified and sequenced. Phylogenetic analysis showed that all 14 JEV strains belonged to genotype I-b and displayed a distinct genetic relationship to the present JEV vaccine strain (SA14-14-2). In conclusion, our results revealed not only the severe prevalence of JEV in Hunan Province, but also that JEV I-b might be the predominant genotype in Hunan Province, suggesting therefore that effective measures for JE control are urgently needed.

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

Development of a Composite Rotor for Flywheel Energy Storage System (플라이휠 에너지 저장 장치용 복합재 로터 개발)

  • Kim, Myung-Hun;Han, Hun-Hee;Kim, Jae-Hyuk;Kim, Seong-Jong;Ha, Seong-Gyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck;Akle, Barbar
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.211-223
    • /
    • 2010
  • Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

A Brief Review of Enhancing Incipient Piezostrains: Approach by Ceramic/Ceramic Composites (비스무스계 무연 압전세라믹스의 저전계 변형특성 향상을 위한 세라믹/세라믹 복합소재 기술)

  • Han, Hyoung-Su;Duong, Trang An;Ahn, Chang Won;Jo, Wook;Lee, Jae-Shin
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.89-100
    • /
    • 2020
  • Abnormally large electromechanical strain properties have been reported in bismuth-based piezoelectric ceramics, which cast a promise for replacing the market-dominating PZT-based piezoelectric ceramics in actuator applications. In spite of these large strains in bismuth-based piezoelectric ceramics, there still remains a critical issue for its safe transfer to practical applications, representatively, a relatively high operating field required to obtain the large strain properties. To overcome the challenge, much attention has been paid to so-called 0-3(or 3-0) type ceramic/ceramic composite approach to better tailoring the strain properties of bismuth-based piezoelectric ceramics. The approach turns out to be highly effective, leading to a drastic decrease in the operating electric field for these materials. Besides, both extensive and intensive search for the related mechanism revealed that the reduction in the operating electric field is largely due to the contribution from polarization coupling or strain coupling model between two different ceramics. This article reviews the status of the art in the development of novel ceramic/ceramic composites to make large incipient piezostrains in bismuth-based lead-free piezoelectric ceramics practical.

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs

  • Kim, Hwang-Pill;Ahn, Chang Won;Hwang, Younghun;Lee, Ho-Yong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.

First-Principles Investigation on the Electromechanical Properties of Monolayer 1H Pb-Dichalcogenides

  • Nguyen Hoang Linh;Nguyen Minh Son;Tran The Quang;Nguyen Van Hoi;Vuong Thanh;Do Van Truong
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.189-194
    • /
    • 2023
  • This study uses first-principles calculations to investigate the mechanical properties and effect of strain on the electronic properties of the 2D material 1H-PbX2 (X: S, Se). Firstly, the stability of the 1H Pb-dichalcogenide structures was evaluated using Born's criteria. The obtained results show that the 1H-PbS2 material possesses the greatest ideal strength of 3.48 N/m, with 3.68 N/m for 1H-PbSe2 in biaxial strain. In addition, 1H-PbS2 and 1H-PbSe2 are direct semiconductors at equilibrium with band gaps of 2.30 eV and 1.90 eV, respectively. The band gap was investigated and remained almost unchanged under the strain εxx but altered significantly at strains εyy and εbia. At the fracture strain in the biaxial direction (19 %), the band gap of 1H-PbS2 decreases about 60 %, and that of 1H-PbSe2 decreases about 50 %. 1H-PbS2 and 1H-PbSe2 can convert from direct to indirect semiconductor under the strain εyy. Our findings reveal that the two structures have significant potential for application in nanoelectronic devices.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.