• Title/Summary/Keyword: Electromagnetism

Search Result 39, Processing Time 0.02 seconds

Study on The Electromagnetism of Interior Permanent Magnet Synchronous Motor due to Field Weakening (매입형 영구자석 동기전동기의 약계자 제어에 따른 전자기적 특성 연구)

  • Kwon, Soon-O
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.254-260
    • /
    • 2013
  • This paper deals with electromagnetic characteristics of IPMSM (Interior Permanent Magnet Synchronous motor) caused by field weakening current control. In order to extend operation speed, field weakening current control is generally used in IPMSM operation. During field weakening, distorted linkage fluxes are resulted by saturation of core material. Therefore, distorted input voltage waveform is required for sinusoidal current input. As the current vector angle increases for field weakening, distortion of linkage flux and back-emf becomes significant. This situation is analyzed by 2-dimensional finite element analysis and verified by experiment. With the results, it is concluded that motor parameters, such as linkage flux by permanent magnet, phase resistance, d-q axis inductance, are insufficient for estimating required voltage for given speed especially in field weakening and additional considerations for increased harmonics of voltage are required.

Growth of AlN/GaN HEMT structure Using Indium-surfactant

  • Kim, Jeong-Gil;Won, Chul-Ho;Kim, Do-Kywn;Jo, Young-Woo;Lee, Jun-Hyeok;Kim, Yong-Tae;Cristoloveanu, Sorin;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.490-496
    • /
    • 2015
  • We have grown AlN/GaN heterostructure which is a promising candidate for mm-wave applications. For the growth of the high quality very thin AlN barrier, indium was introduced as a surfactant at the growth temperature varied from 750 to $1070^{\circ}C$, which results in improving electrical properties of two-dimensional electron gas (2DEG). The heterostructure with barrier thickness of 7 nm grown at of $800^{\circ}C$ exhibited best Hall measurement results; such as sheet resistance of $215{\Omega}/{\Box}$electron mobility of $1430cm^2/V{\cdot}s$, and two-dimensional electron gas (2DEG) density of $2.04{\times}10^{13}/cm^2$. The high electron mobility transistor (HEMT) was fabricated on the grown heterostructure. The device with gate length of $0.2{\mu}m$ exhibited excellent DC and RF performances; such as maximum drain current of 937 mA/mm, maximum transconductance of 269 mS/mm, current gain cut-off frequency of 40 GHz, and maximum oscillation frequency of 80 GHz.

Scientific Understanding Through the Analysis of Students' Intuitive Ideas and Sources on Self-Induction (자체 유도 현상에 대한 직관적 사고의 내용과 원인 분석을 통한 과학자적 이해)

  • Ahn, Soo-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.2
    • /
    • pp.176-188
    • /
    • 2003
  • Self-induction is an important concept in the field of electromagnetism, which is dealt with in all the high school physics textbooks. According to the results of the survey on self-induction, most of general high school students and even science high school students have overgeneralized concepts that high self-induced emf. are produced whenever the switch is turned off in the circuit containing inductors. The reasons of this overgeneralization on self-induction could be explained through the analysis of current high school physics II textbooks. Main reasons can be attributed to the fact that, by depending on their intuitive ideas, students try to vaguely explain the concept, based on lighting up of Ne tube in the special circuit. This study found out qualitative method to have students effectively understand self-induction based on quantitative interpretation to gain scientific understanding on self-induction.

Analysis on the Characteristics of National Assessment of Educational Achievement (NAEA) Items for Science Subject: With a Focus on Optics (국가수준 학업성취도 평가의 과학 문항 특성 분석 : 광학 내용을 중심으로)

  • Lee, Bongwoo;Lee, Inho
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.465-475
    • /
    • 2015
  • The purpose of this study is to analyze the results of physics (optics) in nationwide standardized assessment and to investigate middle-school students' characteristics of achievement by using an option response rate distribution curve. For this purpose, we analyzed the 10 optics problems from the National Assessment of Educational Achievement (NAEA) items for middle school science subject conducted in 2010-2013. The results of this study are as follows; First, students showed a little higher achievement in optics than classical mechanics and electromagnetism. Second, students achieved significantly worse in 'formation of image' in 'light' part and 'variation of phase in propagation of wave' in 'wave' part. Third, students showed a context-dependent problem solving strategy and result. Additionally, we suggested some implications about the readjustment of some optics concepts level of national science curriculum, the need for teaching and learning strategies for basic level students, and the need for teaching and learning strategies focused on the realistic context.

High Efficiency Magnetic Resonance Wireless Power Transfer System and Battery Charging Chip (자기 공진 방식의 고효율 무선 전력 전송 시스템 및 배터리 충전 칩)

  • Youn, Jin Hwan;Park, Seong Yeol;Choi, Jun Rim
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.43-49
    • /
    • 2015
  • In this paper, we propose enhanced wireless power transfer system based on magnetic resonance for portable electronic device charging. Resonators were designed and fabricated for efficiency improvement and miniaturization through electromagnetism simulation using HFSS(High Frequency Structure Simulator). Impedance matching network is employed to minimize reflections that is caused by difference between input impedance and output impedance. Receiver IC that consist of rectifier and Low Drop Out(LDO) regulator were designed and fabricated to reduce power loss. This chip is implemented in $0.35{\mu}m$ BCD technology. A maximum overall efficiency of 73.8% is determined for the system through experimental verification.

Design and Fabrication of Improved Null-Type Torque Magnetometer (개선된 구조의 Null-Type 토크마그네토미터의 설계 및 제작)

  • Kim, Dong-Hyun;Shin, Sung-Chul;Hur, Jeen
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.388-394
    • /
    • 1998
  • We designed and fabricated an improved null-type torque magnetometer for measuring magnetic anisotropy of magnetic materials. This torque magnetometer has a measurement range of $~{\pm}15$ dyne.cm, and the range can be controlled. Resolution is ~0.0005 dyne.cm. Noise level is less than 0.01 dyne.cm with one measurement, and less than 0.004 dyne.cm with 10 averaged measuremets. The precision is less than 0.5 %. In contrast to typical null-type torque magnetometers, we placed a small ferrite magnet in the Helmholtz coil, instead of placing coil in the permanent magnet. From this novel sturucture, we can design a geometrically isotropic and relatively light-weight sample rod. Also, we can prevent the effect of input and output lines of coil exposed in the magnetic field in torque meter. Consequently, our novel null-type torque magnetometer can have a better sensitivity, faster response time, and smaller distortion of torque curve than commercially available torque magnetometers.

  • PDF

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

Magnetic Flux Leakage based Damage Quantification of Steel Bar (누설자속기법을 이용한 강봉의 손상 정량화 기법)

  • Park, Jooyoung;Kim, Ju-Won;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, a magnetic flux leakage(MFL) based steel bar damage detection was first researched to quantify the signals from damages on the wire rope. Though many researches inspecting damages using a MFL method was proceeded until the present, the researches are at the level that diagnose whether damages are or not. This has limitation to take measures in accordance with the damage level. Thus, a MFL inspection system was modeled using a finite element analysis(FEM) program dealing with electromagnetism problems, and a steel bar specimen was adopted as a ferromagnetic object. Then, an experimental study was also carried out to verify the simulation results with a steel bar which has same damage conditions as the simulation. The MFL signals was nearly not affected by the increase of the inspection velocity, and the magnitudes of the signals are not identical according to the change of the defect width even the defects have same depth. On the basis of the analysis, the signal properties from the damages were extracted to classify the type of damages, and it could be confirmed that classification of damages using extracted signal properties is feasible.

Middle school students' interpretation, construction, and application of visual representations for magnetic field due to a current (전류에 의한 자기장에 대한 중학생의 시각적 표상 해석, 구성, 적용 능력)

  • Jo, Kwanghee;Jho, Hunkoog;Yoon, Hye-Gyoung
    • Journal of Science Education
    • /
    • v.41 no.1
    • /
    • pp.152-165
    • /
    • 2017
  • The magnetic field due to a current is one of the core concepts in electromagnetism which has been taught in secondary science education. In addition, it is a representative example of using visual representations to explain the relation between invisible physical quantities; current and magnetic field. In this study we investigated middle school students' representational competence into three components; interpretation, construction, and application of visual representations. According to the analysis, more than 75 % of the respondents interpreted the meaning of the arrows for current and magnetic field correctly. However, half of them confused the movement of electric charges with the direction of magnetic field. Over 60 % of the students constructed the magnetic field representation as circular closed curves, but many of them could not express the density of field lines properly. In application of visual representations, more than half failed to draw the direction of compass needle correctly. The scores were in order of interpretation, construction and application. There were also significant correlations among three components of representational competence. More attention and research on students' representational competence and effective use of visual representations is needed to better support science learning and teaching.