DOI QR코드

DOI QR Code

Middle school students' interpretation, construction, and application of visual representations for magnetic field due to a current

전류에 의한 자기장에 대한 중학생의 시각적 표상 해석, 구성, 적용 능력

  • Received : 2017.02.11
  • Accepted : 2017.04.15
  • Published : 2017.04.30

Abstract

The magnetic field due to a current is one of the core concepts in electromagnetism which has been taught in secondary science education. In addition, it is a representative example of using visual representations to explain the relation between invisible physical quantities; current and magnetic field. In this study we investigated middle school students' representational competence into three components; interpretation, construction, and application of visual representations. According to the analysis, more than 75 % of the respondents interpreted the meaning of the arrows for current and magnetic field correctly. However, half of them confused the movement of electric charges with the direction of magnetic field. Over 60 % of the students constructed the magnetic field representation as circular closed curves, but many of them could not express the density of field lines properly. In application of visual representations, more than half failed to draw the direction of compass needle correctly. The scores were in order of interpretation, construction and application. There were also significant correlations among three components of representational competence. More attention and research on students' representational competence and effective use of visual representations is needed to better support science learning and teaching.

직선 도선 주위에 자기장이 생기는 현상은 중등 교육과정에서 다루는 전자기학의 핵심 개념 중 하나이다. 아울러 비가시적인 전류와 자기장의 관계를 설명하는 과정에서 시각적 표상이 사용되는 대표적 사례이다. 이 연구에서는 중학교 3학년 남녀 112명을 대상으로 전류가 흐르는 직선 도선 주위의 자기장에 관한 문제 상황을 제시하고, 시각적 표상에 관련하여 표상 해석, 구성, 적용 능력을 조사하였다. 분석 결과에 따르면 75% 이상의 응답자가 전류와 자기장을 뜻하는 화살표의 의미를 타당하게 해석하였다. 그러나 50% 남짓은 전하가 자기장을 따라 운동하는 것으로 혼동하였고 주어진 시각적 표상을 전체적으로 올바르게 해석한 학생은 3분의 1미만이었다. 또 전체 응답자의 60 % 이상이 직선 도선의 자기장을 원형 폐곡선 모양으로 표현했지만 자기력선의 조밀함을 올바르게 나타낸 경우는 6.3 %에 불과했다. 또 나침반의 방향으로 상황을 바꾸어 표상 적용 능력을 조사한 결과, 과학적 표현에 해당하는 응답자의 비율이 상당히 줄어들었다. 학생들의 표상 능력을 점수화 한 결과 시각적 표상의 해석, 구성, 적용 능력의 순으로 점수가 나타났고 이들 사이에는 유의미한 상관관계(0.3~0.5)가 있는 것으로 나타났다. 이는 세 가지 표상 능력 요소가 서로 연관이 있으면서도 독립적임을 시사한다. 이러한 연구 결과들은 과학 학습 과정에서 시각적 표상을 효과적으로 활용하고 학생들의 표상 능력을 높일 수 있는 방안에 대한 연구가 필요함을 시사한다.

Keywords

References

  1. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
  2. Eilam, B., & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and instruction, 18(4), 368-378. https://doi.org/10.1016/j.learninstruc.2007.07.003
  3. Faraday, M. (1852). On the physical character of the lines of magnetic force. Reprinted in M. Faraday (Ed.) (1855), Experimental researches in electricity (Vol. 3, pp. 407-437).
  4. Gilbert, J. K. (Ed.). (2005). Visualization in science education. Dordrecht, The Netherlands: Springer.
  5. Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. New York, NY: Springer Science & Business Media.
  6. Griffiths, D. J. (2012). Introduction to electrodynamics (4th ed.). London, UK: Pearson Education.
  7. Jho, H. (2013). Analysis of undergraduate physics textbooks related to the concept of an electric field. New Physics: Sae Mulli, 63(12), 1346-1352. https://doi.org/10.3938/NPSM.63.1346
  8. Jho, H. (2015). Analysis of electricity and magnetism presented in middle-school textbooks from the perspective of the history of science. New Physics: Sae Mulli, 65(10), 982-993. https://doi.org/10.3938/NPSM.65.982
  9. Jo, K. (2016). University students’ understanding of the curl of the magnetic field in upper-level electromagnetism and development of an explanation model. New Physics: Sae Mulli, 66(5), 560-570. https://doi.org/10.3938/NPSM.66.560
  10. Jo, K. H., Song J. W., & Suh, J. A. (2010) Development of an analytical framework for the exemplification type of a science textbook. New Physics: Sae Mulli, 60(3), 283-292. https://doi.org/10.3938/NPSM.60.283
  11. Jo, K., Jho, H., & Yoon, H. G. (2015). Analysis of visual representations related to electromagnetism in primary and secondary science textbooks. New Physics: Sae Mulli, 65(4), 343-357. https://doi.org/10.3938/NPSM.65.343
  12. Jo, O., & Kim, Y. (2008). Investigation of science high-school students’ perceptions and suggestion for a strategy to explain the interaction between an electric current and an external magnetic field. New Physics: Sae Mulli, 57(6), 373-380.
  13. Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of chemical education, 70(9), 701. https://doi.org/10.1021/ed070p701
  14. Kang, H. S., Sung, D. Y., & Noh, T. H. (2007). The influences of small group discussion and students' visual learning style on learning with multiple representations using drawing and writing: Focused on chemical concepts. Journal of The Korean Association For Science Education, 27(1), 28-36.
  15. Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and selfassessment when solving physics problems. Physical Review Special Topics-Physics Education Research, 1(1), 010104. https://doi.org/10.1103/PhysRevSTPER.1.010104
  16. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of research in science teaching, 34(9), 949-968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  17. Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. John (Ed.), Visualization in science education (pp. 121-145). Dordrecht, The Netherlands: Springer Netherlands.
  18. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading Science (pp. 87-113). London, UK: Routledge.
  19. Ministry of Education, Science and Technology [MEST]. (2011). The 2009 revised science curriculum (No. 2011-361). Seoul: Author.
  20. Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge?. Learning and instruction, 31, 13-22. https://doi.org/10.1016/j.learninstruc.2013.12.003
  21. Park, H., Jung, D., Shin, H, Kim, J. et al. (2012). Middle school science 3. Seoul: Kyohaksa.
  22. Park, S. W., & Hyun, D. G. (2014). Theoretical approach to problems related to magnetic interactions of electric currents in elementary-school science classes. New physics: Sae Mulli, 64(4), 405-416. https://doi.org/10.3938/NPSM.64.405
  23. Rosengrant, D., Etkina, E., & Van Heuvelen, A. (2007). An overview of recent research on multiple representations. In L. McCullough, L. Hsu, & P. Heron (Eds.), AIP Conference proceedings (Vol. 883, No. 1, pp. 149-152). AIP.
  24. Roth, W., Lilian, P., & Han, Y. H. (2005). Critical graphicacy: Understanding visual representation practices in school science. New York, NY: Springer Science+Business Media B.V.
  25. Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text and visual displays. Educational psychology review, 14(1), 101-120. https://doi.org/10.1023/A:1013136727916
  26. Song, J., Kim, I., Kim, Y., Kwon, S., Oh, W., & Park, J. (2004). Students' misconceptions on physics. Seoul: Bookshill.
  27. The Korean Physical Society. (KPS) (2016). 2016 Korean-English translation for physics words. Retrieved from http://conf.kps.or.kr/Contents/page.asp?pageCode=0402
  28. Treagust, D. F., & Chittleborough, G. (2001). Chemistry: A matter of understanding representations. In Emerald Group Publishing Limited, Subject-specific instructional methods and activities (Vol. 8, pp. 239-267). Oxford, UK: Elsevier. Emerald Group Publishing Limited.
  29. Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (Eds.). (2013). Constructing representations to learn in science. New York, NY: Springer Science & Business Media.
  30. Yoon, H. G., Jo, K., & Jho, H. (2016). Middle school students’ interpretation, construction, and application of visual representations for electrostatic induction. New Physics: Sae Mulli, 66(5), 580-589. https://doi.org/10.3938/NPSM.66.580
  31. Young, H. D. (1992). University physics (8th ed). Addison-Wesley Publishing Company.

Cited by

  1. 전자기 관련 실험 활동에서 초등 교사가 사용한 표상 패턴과 의미 형성 과정 분석 vol.39, pp.2, 2017, https://doi.org/10.15267/keses.2020.39.2.204