• 제목/요약/키워드: Electromagnetic losses analysis

검색결과 73건 처리시간 0.236초

Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite

  • Lee, Sung-Ho;Kim, Yong-Jae;Lee, Kyu-Seok;Kim, Sung-Jin
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.444-449
    • /
    • 2015
  • Soft magnetic composites (SMCs) are especially suitable for the construction of low-cost, high-performance motors with 3-D magnetic fields. The main advantages of SMCs is that the iron particles are insulated by the surface coating and adhesive used for composite bonding, the eddy-current loss is much lower than that in laminated steels, especially at higher frequencies, and the hysteresis loss becomes the dominant component of core losses. These properties enable machines to operate at higher frequencies, resulting in reduced machine size and weight. In this paper, 3-D topologies are proposed that enable the application of SMCs to effectively reduce losses in high-speed permanent magnet (PM) motors. In addition, the electromagnetic field characteristics of the motor topologies are evaluated and compared using a non-linear finite element method (FEM) based on 3-D numerical analysis, and the feasibility of the motor designs is validated.

154 kV 3상 전력 케이블의 상호작용에 따른 금속 Sheath에서 발생하는 와전류 손실 분석 (Analysis of Eddy Current Loss Considering Interaction Effect in Metal Sheath of 154 kV Three Phase Power Cable)

  • 임상현;김기병;박관수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.389-392
    • /
    • 2020
  • 전력 케이블에서 발생하는 손실을 정확히 예측하기 위해서는 금속 시스에서 발생하는 와전류 손실에 대한 분석이 필요하다. 동손의 경우 도체의 저항과 전류에 의하여 쉽게 계산이 되지만 금속 시스에서 발생하는 와전류의 경우 측정 및 예측이 어렵기 때문이다. 이를 위하여 선행연구에서는 단상 케이블에서 발생하는 와전류 손실을 분석하였지만 실제 환경에서는 3상이 대부분 사용되기 때문에 적용하기에는 한계가 존재한다. 그러므로 본 논문에서는 3상 케이블의 금속 시스에서 발생하는 와전류 손실에 대하여 발생 원인에 따라 이론적으로 분석하고 전자기 수치 해석을 통하여 삼각 배열과 수평배열에서 발생하는 와전류 손실을 예측하였다.

New Resonant AC Link Snubber-Assisted Three-Phase Soft-Switching PWM Inverter and Its Comparative Characteristics Evaluations

  • Yoshida, Masanobu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.239-248
    • /
    • 2003
  • This paper presents a novel prototype of three-phase voltage source type zero voltage soft-switching inverter with the auxiliary resonant snubbers suitable for high-power applications with IGBT power module packages in order to reduce their switching power losses as well as electromagnetic conductive and radiative noises. A proposed single inductor-assisted resonant AC link snubber circuit topology as one of some auxiliary resonant commutation snubbers developed previously to achieve the zero voltage soft-switching (ZVS) for the three-phase voltage source type sinewave PWM inverter operating under the instantaneous space voltage vector modulation is originally demonstrated as compared with the other types of resonant AC link snubber circuit topologies. In addition to this, its operation principle and unique features are described in this paper. Furthermore, the practical basic operating performances of the new conceptual instantaneous space voltage vector modulation resonant AC link snubber-assisted three-phase voltage source type soft-switching PWM inverter using IGBT power module packages are evaluated and discussed on the basis of switching voltage and current waveforms, output line to line voltage quality, power loss analysis, actual power conversion efficiency and electromagnetic conductive and radiative noises from an experimental point of view, comparing with those of conventional three-phase voltage source hard-switching PWM inverter using IGBT power modules.

24kV급 배전반의 외함재질과 두께에 따른 Bus bar와 외함의 전자기 손실특성 분석 (Analysis on Electromagnetic Loss Characteristics of Bus bar and Enclosure according to the Specifications of Enclosures for a 24kV Switchgear)

  • 허정일;홍종기;강형구
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.181-185
    • /
    • 2013
  • This paper deals with the electromagnetic loss characteristics of enclosures for a 24kV high voltage switchgear by using a finite element method (FEM). A study on the electromagnetic characteristics of enclosures for a high voltage switchgear should be conducted to minimize the size and the temperature rising of a switchgear. Generally, the enclosures made by stainless steel are used to minimize the eddy current loss caused by the transporting current in Bus bars due to its non-magnetic characteristics although the price of stainless steel is expensive compared with other metal for enclosures. Therefore, a switchgear made by stainless steel enclosures could be fabricated as a small size and are applied to a switchgear in urban substations. On the contrary, the switchgear enclosures made by steel could be fabricated with relatively cheap manufacturing price. However, the temperature easily rises due to the transporting current in Bus bars because steel is a ferromagnetic material. Therefore, the size of a switchgear made by steel enclosures is relatively massive and installed in rural substations. In this paper, the electromagnetic losses in the enclosures of a switchgear according to various enclosure thicknesses are calculated and compared with each other. Especially, we proposed a hybrid type enclosures for a switchgear made by stainless steel (top and bottom enclosure) and steel (left and right enclosure). It is concluded that the cost electromagnetic performance of applying the hybrid type enclosure is favorable to develop a high voltage switchgear.

HAI 제어기에 의한 SynRM의 효율 최적화 제어 (Efficiency Optimization Control of SynRM Drive with HAI Controller)

  • 최정식;고재섭;이정호;김종관;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.743-744
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Yang, Cunxiang;Fan, Xiaobin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1956-1964
    • /
    • 2018
  • Since the stator winding of High-Speed Permanent Magnet Generator (HSPMG) has few winding turns and low inductance value, it is more prone to be influenced by harmonic current. Moreover, the operation efficiency and the torque stability of HSPMG will be greatly influenced by harmonic current. Taking a 117 kW, 60 000 rpm HSPMG as an example, in order to analyze the effects of harmonic current on HSPMG in this paper, the 2-D finite element electromagnetic field model of the generator was established and the correctness of the model was verified by testing the generator prototype. Based on the model, the losses and torque of the generator under different frequency harmonic current were studied. The change rules of the losses and torque were found out. Based on the analysis of the influence of the harmonic phase angle on torque ripple, it is found that the torque ripple could be weakened through changing the harmonic phase angle. Through the analysis of eddy current density in rotor, the change mechanism of the rotor eddy current loss was revealed. These conclusions can contribute to reduce harmonic loss, prevent demagnetization fault and optimize torque ripple of HSPMG used in distributed power supply system.

Thermal Analysis of a High Speed Induction Motor Considering Harmonic Loss Distribution

  • Duong, Minh-Trung;Chun, Yon-Do;Park, Byoung-Gun;Kim, Dong-Jun;Choi, Jae-Hak;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1503-1510
    • /
    • 2017
  • In this paper, a thermal analysis of a high speed induction motor with a PWM voltage source was performed by considering harmonic loss components. The electromagnetic analysis of the high speed induction motor was conducted using the time-varying finite element method, and its thermal characteristics were carried out using the lump-circuit method. Harmonic losses from tests in the high frequency region were divided into core loss and conductor loss components using various ratios, in order to determine the loss distributions for the thermal analysis. The results from both the calculations and experiment were validated using a high speed induction motor prototype operating at 20,000rpm.

Design of a Novel Integrated L-C-T for PSFB ZVS Converters

  • Tian, Jiashen;Gao, Junxia;Zhang, Yiming
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.905-913
    • /
    • 2017
  • To enhance the zero-voltage switching (ZVS) range and power density of the phase-shift full-bridge (PSFB) ZVS converters used in geophysical exploration, an additional resonant inductor is used as a leakage inductance and a blocking capacitor which is equivalent to interlayer capacitance is integrated into a novel integrated inductor-capacitor-transformer (L-C-T). The leakage inductance and equivalent interlayer capacitance of the novel integrated L-C-T are difficult to determine by conventional methods. To address this issue, this paper presents accurate and efficient methods to compute the leakage inductance and equivalent interlayer capacitance. Moreover, the accuracy of this methodology, which is based on electromagnetic energy and Lebedev's method, is verified by an experimental analysis and a finite element analysis (FEA). Taking the problems of the novel integrated L-C-T into consideration, the losses of the integrated L-C-T are analyzed and the temperature rise of the integrated L-C-T is determined by FEA. Finally, a PSFB ZVS converter prototype with the novel integrated L-C-T is designed and tested.

가우시언 빔 전송 이론을 이용한 빔 결합 특성 해석 (An Analysis on the Properties of Beam Coupling by Using Gaussian Beam Propagation Theory)

  • 한석태;강지만;이정원;제도흥;정문희;김수연;위석오
    • 한국전자파학회논문지
    • /
    • 제21권11호
    • /
    • pp.1324-1333
    • /
    • 2010
  • 본 논문에서는 밀리미터파 수신 시스템의 준광학계 회로에서 발생되는 3가지 빔 결합 손실에 대하여 가우시언 빔 전송 이론을 기반으로 심도 있게 검토하였다. 첫째, 준광학 시스템에 의하여 형성된 각각의 빔 허리와 그들의 위치가 서로 일치되지 않았을 때 발생되는 빔 결합 손실에 대하여 분석하였다. 빔 허리의 크기를 $3\lambda$이상으로 설계하면 빔 광축 방향에 대한 빔 허리 크기와 그 위치의 불일치에 의한 빔 결합 손실을 최소화 시킬 수 있다. 둘째, 준광학 회로에서 서로 다른 두 빔 축의 기울어짐과 각도상의 비정렬에 의한 빔 결합 손실을 해석하였다. 기울기 각도와 정렬에 의한 빔 결합 손실을 고려할 때 빔 허리의 크기가 작을수록 유리함을 알 수 있다. 마지막으로 광축 방향에 대하여 측면 방향으로 하나의 광축이 치우쳐 있는 경우의 결합 손실을 검토하였다. 치우침을 감안한 설계 빔의 반경은 최소한 $3\lambda$ 이상이 되도록 설계되어야 한다.

실내 채널 환경에서 MIMO 시스템의 안테나 이격거리에 따른 채널 용량 분석 (Analysis of Channel Capacity with Respect to Antenna Separation of an MIMO System in an Indoor Channel Environment)

  • 김상근;오이석
    • 한국전자파학회논문지
    • /
    • 제17권11호
    • /
    • pp.1058-1064
    • /
    • 2006
  • 본 논문에서는 3차원 광선 추적법을 이용하여 실내 무선 MIMO 채널에서 공간적 특성들을 해석함으로써 채널 용량을 계산하고, 특정 실내 환경에서 최적화된 다중 안테나의 이격거리를 알아내는 방법을 제안한다. 우선, 가시 영역과 비가시 영역을 갖는 복도 환경에서 3차원 광선 추적법을 이용하여 전파 경로, 전송 손실 및 시간지연 확산 등의 채널 공간적 특성들을 계산하고, 시간 지연 확산 특성을 다이폴 안테나와 네트워크 분석기를 이용하여 측정한 후에 계산 값들과 비교하여 3차원 광선 추적법의 정확성을 검증한다. 그런 다음에 그 실내 환경에 다중 안테나를 갖는 송신기와 수신기를 위치시키고, 수신기 위치별로 송 수신 안테나들의 간격에 따른 전파 경로와 전송 손실을 3차원 광선 추적법을 이용하여 계산하며, 이들 계산 값을 이용하여 채널 용량을 계산한다. 이 계산을 100개의 수신 위치에서 4종류의 안테나 방향 조합을 갖는 조건들에서 안테나 간격에 따른 채널용량을 계산하고, 이들 값들을 평균하여 이 실내 환경에서의 최적의 안테나 이격 거리를 알아내었다.