• Title/Summary/Keyword: Electromagnetic induction method

Search Result 158, Processing Time 0.03 seconds

A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment (유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구)

  • Park, Kwan-Seok;Choi, Jin-kyu;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2018
  • In this study, we proposed a high frequency induction hardening analysis method based on electromagnetic-thermal co-simulation. In the high frequency induction heating analysis, the results of the finite element analysis (FEA) (considering the change of the material property and the cooling factor according to the temperature) and those of the high frequency induction hardening experiment (using the S45C specimen) were compared. The hardness of the S45C specimens was measured using the micro Vickers hardness test to determine the depth of hardening. The measurement results were then compared with the results of FEA. The result of high frequency induction heating analysis showed that the temperature was more than $750^{\circ}C$, which is the A2 transformation point of S45C, while the temperature during quenching was below $200^{\circ}C$. The results showed that the difference of the depth of hardening between the FEA and the experiment is 0.2mm.

Adhesion Performance of Electromagnetic Induction Heating Pixture for the Integration with a Waterproof & Root Barrier Sheet and a Roof Green Unit System (방수·방근시트와 옥상녹화 박스유닛 시스템의 일체화를 위한 전자기 유도가열 융착 고정구의 부착성능)

  • Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • A currently used roof green system with multi layers has a low constructability. Therefore a new integrated waterproof & root barrier sheet and roof green box unit system was developed using steel plate fixture and cone type fixture by electromagnetic induction heating method. This study was proceeded to evaluate adhesion performance of two types of fixtures on Engineering PE, TPO, PVC sheet in a normal condition, repeated heating and cooling condition. As a result, adhesion load on Engineering PE sheet showed the highest value. The adhesion loads of steel plate fixture showed higher value as heating temperature was getting higher. However adhesion loads of cone type fixture showed opposite tendency. Regarding to the test conditions, test results of normal condition, repeated heating and cooling condition showed same value. The cone type fixture using butyl tape showed 7 times lower adhesion load than that of cone type fixture using electromagnetic heating and 28% lower adhesion load in a repeated heating and cooling condition than a usual condition.

Analysis of Electromagnetic Characteristics according to Bar broken in Squirrel-cage Induction Motor (농형 유도전동기의 회전자 바 파손에 따른 전자기적 특성 해석)

  • Lee, Sung-Hyung;Kim, Mi-Jung;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.95-97
    • /
    • 2008
  • This Paper presents the effects according to broken rotor bar of squirrel cage induction motor. The rotor faults of induction motors may cause bad effects on the performance of the motor. An accurate modeling and analysis of characteristics of damaged rotor bar in the induction motor are developed using FEM(Finite Element Method). The results can be useful for real-time on-line monitoring system of an induction motor.

  • PDF

FEA & Topology Optimization of Single-Phase Induction Motor for Rotary Compressor (로터리 컴프레서용 단상 유도모터의 유한요소해석 및 위상 최적설계)

  • Wang, Se-Myung;Kang, Je-Nam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.351-356
    • /
    • 2002
  • The oil circulation rate (OCR) of the rotary compressor is a crucial factor affecting the performance and reliability of air-conditioning systems. In this paper, topology optimization of the single-phase induction motor of rotary compressor is carried out for reducing the OCR. The nonlinear transient characteristic of single-phase induction motor for rotary compressor is analyzed by using FLUX2D. The topology optimization for electromagnetic systems is developed using the finite element method (FEM). The topology optimization is applied to a single-phase induction motor for reducing the OCR. For validation, optimize induction motors are manufactured and tested.

A Study on the Relationship between Mechanical Property and Impedance Characteristics with respect to Tempering Temperature in Alloy Steels by Electromagnetic Method (자기유도법에 의한 합금강의 템퍼링 온도에 따른 기계적성질과 임피던스 특성과의 관계에 관한 연구)

  • Cho, K.S.;Chang, H.K.;Lee, J.S.;Bae, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.38-43
    • /
    • 1988
  • Microstructure and mechanical properties of most steels change by heat treat treatment. Such variation of stucture and properties of steel cause an impedance change on electromagnetic induction coil. The objective of this study is, by searching the relationship between the mechanical property or microstructural changes and impedance value of induction coil, to examine the applicablity of a monitoring the heat treated condition of products nondestructively.

  • PDF

Analysis of Flow Characteristics and Experiment of Conductive Liquid Metal Coupling Lorentz Force with Fluid Equation (전자력과 유동방정식을 결합한 전도성 용융금속의 유동특성 해석 및 실험)

  • Jeon, Mun-Ho;Lee, Suk-Won;Kim, Chang-Eob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1329-1335
    • /
    • 2009
  • This paper presents the flow characteristics in the fluid circulation loop using the tubular type linear induction motor(TLIM) electromagnetic pump. A TLIM pump was designed using the equivalent and genetic algorithm for the flow system of 40[1/min]. The flow characteristics are analyzed by coupling the Maxwell equations with the Navier-Stokes equation. The analysis algorithm also takes account of the effects of the thrust. The flow characteristics are analysed with the proposed method and compared with the commercial program and experiment and discussed.

A study on the magnetic flux distribution of 3-phase 4-pole induction motor by finite element method (유한요소법에 의한 삼상유도전동기의 자속분포해석에 관한 연구)

  • 임달호;현동석;임태빈
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.219-226
    • /
    • 1981
  • The magnetic field distribution in saturable iron part of electromagnetic energy conversion divices is defined by the nonlinear quasi-Poisson enquation that is described the electromagnetic field characteristics and satisfied the natural boundary condition. The solution of this equation is obtained by minimizing an energy functional by means of trial function that defined in triangular subregion of two-dimensional field region. As a result, the accuracy of the machine design is increased by use of its solution. In this respect, this study is developed the basic theory to analyze the magnetic flux distribution in saturable iron part and air gap of induction motor that its secondary part is short circuit by the variational principle, the minimized theory of energy functional, the application of F.E.M., and treatment of computer. As theoritical data compared with the practics, the validity of the theory in this study is supported by experimental findings.

  • PDF

Shape Modelling of Levitated Molten Metal in Axisymmetric Induction Beating System (고주파 유도 가열 장치에서 피가열체의 형상 결정)

  • Suh, C.D.;Lee, H.B.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.954-956
    • /
    • 1993
  • This paper describes the process of levitation melting of metals in an axisymmetric induction heating system. This process has advantages of low heat losses, heating with short times and clean operating conditions. The shape of molten metal is determined using sensitivity analysis and optimization technique. Electromagnetic, gravitational and surface tension energies are considered, and these energies are used as an objective function in optimization process. Electromagnetic field are calculated using the finite element method. The fact that volume is constant in the process is also considered as an equality constraint.

  • PDF

Design and Fabrication of Scaffold Type Energy Harvester Using Multiplying Gear Module (증속기어 모듈을 이용한 발판형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.857-862
    • /
    • 2014
  • In this paper, we designed and fabricated electromagnetic induction based scaffold type energy harvester. For energy harvesting, mechanical energy of vertical motion is transferred to rotational energy using rack gear and multiplying gear was used to maximize energy transfer. To optimize design parameters, physical structure of energy harvester was modeled using finite element method. The effect of multiplying gear ratio and frequency levels of applied mechanical energy on energy generation efficiency are analyzed by computer simulation and experimental test. Experimental results showed that maximum 25.36 W of electric power can be achieved at the frequency of 2 Hz and 1:77 of gear ratio with only 5 mm of vertical changes on scaffold structure.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.