• Title/Summary/Keyword: Electromagnetic field analyses

Search Result 45, Processing Time 0.04 seconds

Analysis of Electric Water Pumps for Electric Vehicles (전기자동차용 전동식 워터펌프 해석)

  • Dong-Hwa Shin;Byung-Ho Lee;Dae-Hwan Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1137-1144
    • /
    • 2024
  • This paper is about an electric water pump used in an electric vehicle cooling system. An electric water pump is operated by a BLDC motor compared to a mechanical one, so it operates only as much as necessary, improving fuel efficiency. The use of an electric water pump reduces exhaust gas and has the advantage of being free to install, so it can be applied to automobiles, ships, and aircraft. In order to optimize the production of a BLDC motor used as an electric water pump, FEM and electromagnetic field analysis were performed. The dimensions and materials of the stator and rotor were selected by applying the values obtained through the analysis. In addition, the output characteristics of the motor were analyzed through parameter analysis and shape change through self-equivalent circuit analysis to reduce the outer diameter and increase the torque. The electromagnetic hazard of the PCB board was verified, and power integrity analysis was performed to reduce resonance and noise.

Experimental Verification and Prediction of Generating Performance of PMG with Multi-Pole Rotor based on Electromagnetic Analysis and Parameter Estimation considering Skew Effects (스큐를 고려한 다극 영구자석 발전기의 전자기 특성해석/제어정수 도출을 통한 발전특성 예측 및 실험적 검증)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Park, Ji-Hoon;Lee, Sung-Ho;Kim, Ii-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.752-753
    • /
    • 2008
  • The analytical expressions for magnetic field distributions considering slotting effects, cogging torque and back-emf considering skew effects are established. On the basis of magnetic field solutions, electrical parameters such as back-emf constant and winding inductance are obtained. The predicted results are validated extensively by non-linear finite element (FE) analyses. In particular, test results such as back-emf, cogging torque, inductance and resistance measurements are given to confirm the analyses. Finally, generating performances are investigated by applying estimated parameters to equivalent circuit (EC) of the permanent magnet generator (PMG) and validated extensively by FE calculations and measurements.

  • PDF

Simulation of electromagnetic Phenomena in Vacuum interrupter with axial magnetic field type by Arc (아크 발생에 의한 축자계형 진공인터럽터의 전자계 현상 시뮬레이션)

  • Seo, Sang-Hyun;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, we performed analysis of electric field, magnetic field, current density in AMF electrode using the Maxwell 3D simulation. The current distribution and magnetic field in simple models are analyzed to verify its efficiency and accuracy. In the vicinity of the slits of axial magnetic field type electrode a comparatively high axial magnetic flux density existsIn addition the validity of FEM is confirmed by performing the analyses of distribution in current density and magnetic flux density.

  • PDF

Sensitivity Analysis for Shape Optimization in Eddy Current Problem (와전류문제에서 형상최적화를 위한 민감도해석)

  • Lee, Beom-Taek;Park, Il-Han;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.19-22
    • /
    • 1990
  • In order to optimize systematically the shape of electromagnetic devices, two sensitivity analyses, one based on finite element method and the other based on variational formulae and material derivative in continuum mechanics, are proposed. These are applied to eddy current problem of time-varying field and verified these usefulness.

  • PDF

Influences of Viscous Losses and End Effects on Liquid Metal Flow in Electromagnetic Pumps

  • Kim, Hee-Reyoung;Seo, Joon-Ho;Hong, Sang-Hee;Suwon Cho;Nam, Ho-Yun;Man Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.233-240
    • /
    • 1996
  • Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current ( u x B ) generated by the liquid metal movement across the magnetic field rather than the one (E) produced by externally applied magnetic fields by three-phase winding currents. It is concluded that since the influences of the end effects in addition to viscous losses are extensive particularly in high-velocity operations of the EM pumps, it is necessary to find ways to suppress them, such as proper selection of the pump parameters and compensation of the end effects.

  • PDF

Experimental Verifications and Electromagnetic Characteristics Analysis of Multi-Pole Permanent Magnet Generator for Small-Scaled Wind Power System (소용량 풍력시스템을 위한 다극 영구자석형 발전기의 전자기적 특성 해석 및 실험적 검증)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Choi, Jang-Young;Yoon, Gi-Gap
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.609_610
    • /
    • 2009
  • This paper deals with experimental verifications and the electromagnetic characteristics analysis of multi-pole permanent magnet (PM) generator for small-scaled wind power system. Field distribution due to PMs and winding current, cogging torque considering skew effect are analyzed. In addition, using the equivalent circuit method and dynamic d-q method, generating performance analysis is performed. Analysis results are validated by comparison with nonlinear finite element analyses and experimental results.

  • PDF

A study on Loss Evaluation Technology of High Efficiency Mold Transformers using Electromagnetic Field Simulation (전자계해석을 이용한 고효율 몰드변압기 손실 평가기술 연구)

  • Chung, Sang Hoon;Lee, Kon;Choi, Myung Jun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.774-775
    • /
    • 2015
  • In this paper, a series of electromagnetic analyses carried out for a high efficiency 22.9/0.38kV mold transformer are presented. The simulations were performed in order to calculate the losses which eventually verify the performance(efficiency) of the designed product. Here, losses include core loss, stray losses of non-current carrying metallic structural parts(core plate and clamp), ohmic loss and eddy current loss of current carrying metallic parts(busbars, leads, terminals and windings). The obtained results of the simulations were compared to the test results and showed high level of accuracy. The loss evaluation technology will allow designers avoid any potential over-design or under-design of the high efficiency products, reducing the manufacture cost and development period compared to the conventional experience-based design procedures.

  • PDF

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

Worst-Case Estimate of Envelope Correlation Coefficient for Small MIMO Mobile Antennas Below 1 GHz

  • Zhao, Xing;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.44-52
    • /
    • 2015
  • A worst-case estimate of an envelope correlation coefficient (ECC) is obtained for small multiple-input multiple-output (MIMO) mobile antennas operating below 1 GHz. The worst-case estimate is numerically derived in this paper using spherical and exponential wave functions. The derived result confirms that the worst-case ECC can be easily obtained from the rotation angle between the radiation patterns of two MIMO elements, which are attained directly from the amplitude of 2D electric field patterns without any additional phase and polarization information. As a practical example, MIMO mobile antennas with different antenna element arrangements are compared to verify the validity of the proposed worst-case estimate. Moreover, based on these analyses, we also suggest an effective approach to reduce the ECC of a small MIMO mobile antenna operating below 1 GHz by properly locating the antenna elements to make the radiation patterns perpendicular to each other.

Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β

  • Caliskan, Serife Gokce;Bilgin, Mehmet Dincer;Kozaci, Leyla Didem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2701-2705
    • /
    • 2015
  • Chondrosarcoma, the second most common type of bone malignancy, is characterized by distant metastasis and local invasion. Previous studies have shown that treatment by pulsed electromagnetic field (PEMF) has beneficial effects on various cancer cells. In this study, we investigated the effects of PEMF applied for 3 and 7 days on the matrix metalloproteinase (MMP) levels in chondrosarcoma SW1353 cells stimulated with two different doses of $IL-1{\beta}$. SW1353 cells were treated with (0.5 and 5 ng/ml) $IL-1{\beta}$ and PEMF exposure was applied either 3 or 7 days. MMP-9 and TIMP-1 levels were measured in conditioned media by enzyme-linked immunosorbent assay. The results were relative to protein levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). P<0.05 was considered significant. PEMF treatment significantly decreased MMP-9 protein levels in human chondrosarcoma cells stimulated with 0.5 ng/ml $IL-1{\beta}$ at day 7, whereas it did not show any effect on cells stimulated with 5 ng/ml $IL-1{\beta}$. There was no significant change in TIMP-1 protein levels either by $IL-1{\beta}$ stimulation or by PEMF treatment. The results of this study showed that PEMF treatment suppressed $IL-1{\beta}$-mediated upregulation of MMP-9 protein levels in a dual effect manner. This finding may offer new perspectives in the therapy of bone cancer.