• 제목/요약/키워드: Electromagnetic coil

검색결과 455건 처리시간 0.029초

Coil Gun Electromagnetic Launcher (EML) System with Multi-stage Electromagnetic Coils

  • Lee, Su-Jeong;Kim, Ji-Hun;Song, Bong Sob;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.481-486
    • /
    • 2013
  • An electromagnetic launcher (EML) system accelerates and launches a projectile by converting electric energy into kinetic energy. There are two types of EML systems under development: the rail gun and the coil gun. A railgun comprises a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail, but the high mechanical friction between the projectile and the rail can damage the projectile. A coil gun launches the projectile by the attractive magnetic force of the electromagnetic coil. A higher projectile muzzle velocity needs multiple stages of electromagnetic coils, which makes the coil gun EML system longer. As a result, the installation cost of a coil gun EML system is very high due to the large installation site needed for the EML. We present a coil gun EML system that has a new structure and arrangement for multiple electromagnetic coils to reduce the length of the system. A mathematical model of the proposed coil gun EML system is developed in order to calculate the magnetic field and forces, and to simulate the muzzle velocity of a projectile by driving and switching the electric current into multiple stages of electromagnetic coils. Using the proposed design, the length of the coil gun EML system is shortened by 31% compared with a conventional coil gun system while satisfying a target projectile muzzle velocity of over 100 m/s.

실리콘 압저항형 진동 센서를 이용한 Voice-coil형 구동기의 미소 전자력 측정 (The Micro Electromagnetic Force Measurement of Voice-coil Actuator using Semiconductor Piezoresistive Type Vibration Sensor)

  • 권기진;이기찬;박세광
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.147-152
    • /
    • 1999
  • Semiconductor piezoresistive type vibration sensor was fabricated by using semiconductor process and micromachining technology. To measure the micro electromagnetic force between coil and magnet, fabricated vibration sensor was used. Toapply micro electromagnetic force produced from the micro exciter, small-sized NdFeB permanent magnet was attached on the mass of the fabricated vibration sensor. The measured electromagnetic force are about 5~180dyne when the applied sinusoidal current of 1KHz in the range of 1.5~8mA. The measurement of micro electromagnetic forcewas performed by changing the distance between coil and magnet. Output characteristics of micro electromagnetic force according to the applied coil current were linear. Furthermore, output results were used to get the transfer constant that is important to decide the efficiency and the performance of the coil and magnet.

  • PDF

Bar 성형 코일을 이용한 전자기 성형에 관한 기초 연구 (A Fundamental Study on Magnetic Pulse Forming with Bar Forming Coil)

  • 심지연;강봉용;박동환;김일수
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.292-297
    • /
    • 2011
  • MPF(Magnetic pulse forming) process refers to the high velocity and high strain rate deformation of a low-ductility materials driven by electromagnetic forces that are generated by the rapid discharge current through forming coil. The goal of this study was to find the characteristics of dynamic behavior of workpiece and to find the main design process on MPF using bar forming coil. For these purposes, thin Al5053 sheet were used for the experiment. The measured strain data were analyzed by developed electromagnetic FE-model. The main design parameter is location of coil, electromagnetic force. In case of the bar forming coil, there exists the dead regions where the low electromagnetic force applied on the workpiece.

전자기력 자유벌지 실험을 위한 성형코일 설계 및 3-D 해석비교 (Design of a Free Bulge Test Coil Using Electromagnetic Forces and Comparison between Experimental and Numerical Results)

  • 김홍교;노학곤;강범수;김정
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.431-438
    • /
    • 2014
  • For electromagnetic forming(EMF) the most important feature is a forming coil which creates the electromagnetic force(Lorentz force), using current density and a magnetic field. Most previous papers have concentrated on the final configuration of the blank or the efficiency of EMF process. Studies focused on the design parameters affected by the forming coil performance have not been conducted. In order to design a suitable forming coil for an object, the current study uses LS-DYNA EM-Module to not only optimize the coil but also to examine the effect of coil performance. By this method a suitable forming coil was made and tested to determine whether or not good formability was achieved in a free bulge test Numerical analysis was also used. The workpiece was Al 1100-O with a thickness of 1.27mm and the coil was made from copper CW004A, which has good electrical conductivity and is suitable for electrical components.

피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계 (Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity)

  • 이수정;이주희;이동연;서태원;김진호
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Shading Coil의 최적 회로정수 결정에 관한 연구 (A Study on the Determination of Optimal Circuit Constants of Shading Coil)

  • 김시화
    • 한국항해학회지
    • /
    • 제9권1호
    • /
    • pp.95-109
    • /
    • 1985
  • It has been generally known that the chattering of an AC electromagnetic contactor due to the fluctuation of attracting force is the primary cause of its abrasion and noise. To reduce this chattering effect, an AC electromagnetic contactor is mostly fitted with a shading coil which works the role to make difference in phases of two distinct components of attracting force. The theoretical interpretation of an AC electromagnetic contactor with shading coil and the equation of its attracting force per unit wattage consumed have already been proposed, however, few explications so far have been made on the determination of optimal circuit constants of shading coil. In this paper, the auther constructs a circuit model of an AC electromagnetic contactor with shading coil which is based on the theoretical interpretation of shading coil examined to be valid by experiments under some assumptions, and defines the equation of attracting force without chattering per unit wattage consumed as a performance function for determining the optimal circuit constants of shading coil. And then, the optimal circuit constants maximizing the performance function are determined by means of computer simulation founded on the above circuit model and the characteristics of those circuit constants are examined with special attention to the coupling coefficient.

  • PDF

Shading Coil이 장치된 전자개폐기의 흡인력에 관한 연구 (A Study on the Attracting Force of an Electromagnetic Contactor with Shading Coil)

  • 김시화;노창주
    • 한국항해학회지
    • /
    • 제6권2호
    • /
    • pp.35-55
    • /
    • 1982
  • The attempt of this paper is to examine the basic theory on the analysis of the effect of a shading coil fitted to an electromagnetic contactor, and to compare experimentally the attracting force of an AC electromagnetic contactor with that of a DC electromagnetic contactor, with varying the airgap length. Equations are also proposed for calculating the AC and DC attracting force per unit consumption wattage by using the circuit constants measured from the experiment, and these calculated attracting forces are compared with those actulally measured, and then, the experimental contactor is examined in the view of its design. The calculated attracting forces are appeared to coincide well with the measured ones and the experimental contactor fitted with shading coil is revealed not so well designed for reducing the fluctuation of the attracting force.

  • PDF

무유도 초전도 한류 코일의 층간 간격에 따른 전자기적 특성 연구 (Electromagnetic characteristics of non-inductively wound coil according to gap length between layers)

  • 양성은;박동근;김영재;장기성;안민철;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.822_823
    • /
    • 2009
  • Superconducting fault current limiters (SFCLs) provide one of the most effective solutions to cope with enormous increase of fault current level. The 13.2 kV/ 630 A class resistive SFCL using coated conductor (CC) was developed and its short-circuit test was successful. Successful commercialization of the SFCL requires that no loss is produced by impedance of limiting coil during normal operation. Since the limiting coil consists of inner layer and outer layer, gap length between the layers is an important parameter to analyze the electromagnetic characteristics of coil. This paper deals with the electromagnetic characteristics of coil according to gap length through the simulation and analysis in comparison with experiment results.

  • PDF

전자기 용접의 충돌 속도에 대한 코일 형상의 영향 (Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding)

  • 박현일;이광석;이진우;이영선;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.

코일건의 속도향상에 관한 연구 (Improving Speed of Coil Guns)

  • 박창형;김진호
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.118-123
    • /
    • 2018
  • Coil guns are known worldwide as inexpensive space launch vehicles. The principle of Fleming's right-hand rule allows the coil gun to accelerate the projectile by applying enormous voltage to the solenoid coil. This study was performed to improve the speed of the coil gun using MATLAB, a commercially available numerical program for high launching force of electromagnetic projectiles. To maximize the speed of the projectile, the largest coil of American wire gauge was used, and the number of windings in the radial and axial directions of the solenoid coil was optimized. Optimal length of the projectile was obtained by calculating the optimal aspect ratio between the axial length of the solenoid coil and the length of the projectile.