• 제목/요약/키워드: Electromagnetic Wave Absorber

검색결과 149건 처리시간 0.03초

New Approach to Reduce Radiated Emissions from Semiconductor by Using Absorbent Materials

  • Kim, Soo-Hyung;Moon, Kyoung-Sik
    • 한국전자파학회지:전자파기술
    • /
    • 제12권1호
    • /
    • pp.34-41
    • /
    • 2001
  • Semiconductors performing digital clocking are a main source of radiated emission noise. Therefore, the most secure method of reducing emission noise is to reduce emission radiated from semiconductors; an application of an absorber to the surface of semiconductors is one of these methods, too. However, in reality, it is difficult to achieve as much effect of noise reduction as expected by using only absorber. It is confirmed by experiment in this paper that a loop area within chip has no correlation with radiated emission noise and it is clarified why the existing absorber fails to achieve a satisfactory effect of emission noise reduction. Besides, a new type of chip coating absorber has been developed which can cover up to semiconductor out lead by using ferrite coating material of ferrite/epoxy acrylate substance using only permeability loss out of electromagnetic wave reduction characteristics of materials. As a result of evaluating radiated emission noise by applying this coating absorber to semiconductor device, it could be confirmed that emission noise decreased from about 3 ㏈ up to 20㏈ depending on frequency.

  • PDF

A Study on the EM Wave Absorber for Improving Electromagnetic Environment of Wireless LAN at 2.4 GHz

  • Yoo, Gun-Suk;Kim, Dong-Il;Choi, Dong-Soo;Choi, Dong-Han
    • 한국항해항만학회지
    • /
    • 제34권7호
    • /
    • pp.539-542
    • /
    • 2010
  • In this paper, we designed and fabricated the Electro-Magnetic (EM) wave absorber for wireless LAN by using Amorphous and CPE. The material constants and the absorption properties were measured for the samples containing 50 %, 60 %, and 70 % weight fraction of Amorphous. Moreover, the EM wave absorption abilities were simulated for the EM absorbers in different thicknesses by adopting the measured permittivity and permeability, and then the EM wave absorber was fabricated based on the simulated design values. As a result, the EM wave absorber with the composition ratio in Amorphous : CPE = 60 : 40 wt.% with the thickness of 4 mm has the absorption ability more than 35 dB at 2.4 GHz. Thus, it is expected the wireless LAN environment can be improved by using the developed absorber.

레이다 단면적 저감을 위한 메타물질 구조의 전자파 흡수체 (Electromagnetic Wave Absorbers with Metamaterial Structure for RCS Reduction)

  • 이홍민
    • 한국전자파학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2015
  • 본 초청 논문에서 저자는 금속의 접지 판이 없는 메타물질 흡수체에 대한 새로운 설계 기법을 제시하고, 몇 가지 설계 예를 검토하였다. 일반적인 메타물질 흡수체 구조와는 대조적으로 설계 목표로 설정된 흡수 주파수 대역 이외의 주파수에서도 메타물질 흡수체를 구성하는 금속 패턴 자체에서 전파 반사에 의한 레이다 단면적(RCS) 값을 감소시키기 위하여 흡수체 구조의 금속 패턴 층은 입사 전자파의 진행 방향과 평행하게 놓였다. 광대역 흡수특성을 나타내며, 곡면 구조에도 응용이 가능한 금속의 접지 판이 없는 메타물질 흡수체의 역량도 검토될 것이다.

Sendust와 Mn-Zn Ferrite를 이용한 PCB로부터의 전자파 방사 억제용 전파흡수체 개발 (Development of EM Wave Absorber for Suppression Noise from PCB Using Sendust and Mn-Zn Ferrite)

  • 윤상길;김동일;송영만;박수훈
    • 한국전자파학회논문지
    • /
    • 제19권2호
    • /
    • pp.244-249
    • /
    • 2008
  • 본 논문에서는 Sendust와 Mn-Zn ferrite를 이용하여 2.4 GHz ISM 대역 PCB 노이즈 제거용 전파흡수체를 설계 및 제작하였다. Sendust와 Mn-Zn ferrite를 바인더인 CPE와 혼합하여 조성비별 전파흡수체 샘플을 제작하였고, 이를 분석한 결과 최적의 조성비가 Sendust : Mn-Zn ferrite : CPE=70:5:20 wt.%임을 확인하였다. 전파흡수체 샘플로부터 계산되어진 재료 정수를 이용하여 두께에 따른 흡수능의 변화를 시뮬레이션 하였으며, 시뮬레이션 결과를 토대로 전파흡수체를 실제작하여 전파 흡수능을 비교, 분석하였다. 그 결과, 시뮬레이션 결과와 실측정 결과는 잘 일치하였으며, 중심 주파수 2.4 GHz에서 흡수능 5.4 dB, 1.4$\sim$4.1 GHz 대역에서 3 dB 이상의 흡수능을 보였으며, 이때 두께는 0.85 mm이었다.

Development of Broadband Electromagnetic Wave Absorber for X-band Sensors in Double-layered Type Using Carbon

  • Choi, Chang-Mook;Kim, Dong-Il;Li, Rui;Choi, Dong-Han
    • 한국항해항만학회지
    • /
    • 제30권9호
    • /
    • pp.763-766
    • /
    • 2006
  • In this paper, the EM wave absorbers were designed and fabricated for X -band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by using measurement results of S-parameter. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design The fabricated EM wave absorber consists of 1 mm first layer sheet facing metal with Carbon composition ratio 70 vol. % and 1.5 mm second layer sheet with Carbon composition ratio 60 vol. %. The measured results showed a good agreement to the simulated ones. It is found toot the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.

Development of Broad-Band Electromagnetic Wave Absorber for X-band Sensors in Double-layered Type Using Carbon

  • Choi, Chang-Mook;Kim, Dong-Il;Choi, Dong-Han;Li, Rui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.297-300
    • /
    • 2006
  • In this paper, the EM wave absorbers were designed and fabricated for X-band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by the measured S-parameter data. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design. The fabricated EM wave absorber consist of 1mm first layer sheet facing metal with Carbon composition ratio 70 vol% and 1.5 mm second layer sheet with Carbon composition ratio 60 vol%. The comparisons of simulated and measured results are good agreement. As a result, the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.

  • PDF

Electromagnetic Wave Absorption Characteristics of Y-type Barium Ferrite Prepared by the Glass-ceramic Method

  • Miki, Hiroki;Hori, Chinatsu;Nagae, Masahiro;Yoshio, Tetsuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1179-1180
    • /
    • 2006
  • Y-type barium ferrite ($Ba_2Me_2Fe_{12}O_{22};$ Me=Zn, Co, Cu) expected as an electromagnetic wave absorber were prepared by the glass-ceramic method. The glasses with composition of $0.1ZnO{\cdot}0.9(xB_2O_3{\cdot}yBaO{\cdot}(1-x-y)Fe_2O_3)$ were prepared. Single-phase powders of Y type barium ferrite were obtained with the composition $0.1ZnO{\cdot}0.9(0.2B_2O_3{\cdot}0.5BaO{\cdot}0.3Fe_2O_3)$. The shape of Y-type crystals depended strongly on the heating temperature and changed from a plate-like hexagon to a complex polyhedron with increasing heating temperature. Correlation was recognized between saturation magnetization and crystal shape. Electromagnetic wave absorption characteristics was affected by the saturation magnetization and crystal shape.

  • PDF

전파흡수체용 $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite에 관한 연구 (A Study on $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite for Electromagnetic Wave Absorber)

  • 박연준;김동일
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.69-75
    • /
    • 1998
  • The super wideband electromagnetic wave absorber in RF-A-PF type has been proposed, which can be used for an anechoic chamber, wall material to prevent TV ghost, etc, In this paper, $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$ Ferrite Powder has been fabricated. Using this, then, [$Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composite for RF-layer in the RF-A-PF type absorber has been fabricated and its characteristics has been analyzed. As a result, it has been shown that the $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composit with the quantity $_x$ of $Ni_x$ between 0.5 and 0.6 is suitable for the RF-layer in the case of which the grain size is sub-micrometer order.

  • PDF

Fe-계 연자성 금속분말을 이용한 2.4 GHz 대역 무선통신용 전파 흡수체의 특성 평가 (Characteristics of Electromagnetic Wave Absorber Sheet for 2.4 GHz Wireless Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder)

  • 김병철;서만철;윤여춘
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.532-541
    • /
    • 2019
  • Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In high-density electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.

$Ni_{0.6}-Cu_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 카본 첨가효과 (A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-Cu_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by Addition of Carbon)

  • 박연준;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.149-154
    • /
    • 2000
  • In this paper, we studied the relation between addition of carbon and electromagnetic wave absorbing properties of ferrite-rubber composite. The ratio of carbon was 7 wt%. As s result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are changed by the addition of carbon in composite. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the using of carbon.

  • PDF