• Title/Summary/Keyword: Electromagnetic Properties

Search Result 759, Processing Time 0.023 seconds

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Development of an EMAT System for Detecting flaws in Pipeline (배관결함 검출을 위한 EMAT 시스템 개발)

  • Ahn, Bong-Young;Kim, Young-Joo;Kim, Young-Gil;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • It is possible to detect flaws in pipelines without interruption using all EMAT transducer because it is a non-contact transducer which can transmit ultrasonic waves into specimens without couplant. And it ran easily generate guided waves desired in each specific problem by altering the design of coil and magnet. In the present work, EMAT systems have been fabricated to generate surface waves, and selectively the plate wave of $A_1\;or\;S_1$ mode. The surface wave of 1.5MHz showed a good signal-to-noise ratio without distortion in its propagation along a pipeline, while the $S_1$ mode of 800kHz and the $A_1$ mode of 940kHz were distorted according to their dispersive properties. The wider the excitation pulse becomes, the better the mode selectivity of the plate waves becomes. A pipe of 256mm inner diameter and 5.5m thickness with 5 flaws was used for comparing the flaw detectability among the modes under consideration.

Study on the Piezoelectric Energy Harvesting Technology for the Energy Conversion of Vibration in Automobiles (자동차 진동 에너지 변환을 위한 압전 에너지 하베스팅에 관한 연구)

  • Lee, Hyeon Yeong;Kim, Kwangwon;Ye, Jiwon;Woo, Suhyeon;Lee, Geon;Lee, Seungah;Jeong, Seong Rok;Jeong, Seon Hye;Kim, Ho Seong;Nam, Ga Hyeon;Jo, Yun Yeong;Choi, Han Seung;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.495-504
    • /
    • 2021
  • Energy Harvesting is a technology that can convert wasted energy such as vibration, heat, light, electromagnetic energy, etc. into usable electrical energy. Among them, vibration-based piezoelectric energy harvesting (PEH) has high energy conversion efficiency with a small volume; thus, it is expected to be used in various autonomous powering devices, such as implantable medical devices, wearable devices, and energy harvesting from road or automobiles. In this study, wasted vibration energy in an automobile is converted into electrical energy by high-power piezoelectric materials, and the generated electrical energy is found to be an auxiliary power source for the operation of wireless sensor nodes, LEDs, etc. inside an automobile. In order to properly install the PEH in an automobile, vibration characteristics includes frequency and amplitude at several positions in the automobile is monitored initially and the cantilever structured PEH was designed accordingly. The harvesting properties of fabricated PEH is characterized and installed into the engine part of the automobile, where the vibration amplitude is stable and strong. The feasibility of PEH is confirmed by operating electric components (LEDs) that can be used in practice.

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties (탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향)

  • Choi, Ye Ji;Lee, Kyeong Min;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability (사면 안정성 평가를 위한 물리탐사 적용 사례 분석)

  • Cho, Ahyun;Joung, Inseok;Jeong, Juyeon;Song, Seo Young;Nam, Myung Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.111-125
    • /
    • 2022
  • Since landslide can cause huge damages to many facilities, close characterization of slopes is needed for appropriate reinforcements for the unstable ones in order to prevent the damages. Geophysical surveys, which can characterize a large area at a relatively low cost without disturbing slopes, have been widely employed for the assessment of slope stability in other countries. However, only conventional direct investigation methods are mainly used in Korea. In this paper, we analyzed various cases, which evaluated slope stabilities by characterizing slopes using geophysical exploration. First, we introduced changes in geophysical properties due to unstable media of slope like fracture location, fracture connectivity and distribution of groundwater level, and subsequently discussed the applicability of geophysical methods to the detection of the changes; the methods include electrical resistivity survey, seismic survey, self-potential survey, induced polarization survey and ground penetrating radar. Based on this description, we analyzed how geophysical surveys were performed on various slopes.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.