• Title/Summary/Keyword: Electromagnetic Numerical Analysis

Search Result 422, Processing Time 0.026 seconds

Design of Tight Coupled 1/4 Wavelength Backward-Wave Directional Coupler using Coupled Lines with Finite Metallization Thickness (도체 두께를 가진 결합선로를 이용하여 강한 결합특성을 갖는 1/4파장 역방향 방향성 결합기의 설계)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1004-1010
    • /
    • 2003
  • In this paper, the 1/4 wavelength backward-wave directional coupler using coupled lines with finite metallization thickness is described. A mode-matching method, simple and fast approach to the quasi-static analysis, has been used to analyse this structure. The numerical results show that it is possible to overcome the disadvantages of weakly coupling, low directivity, and narrow strip distance non-realizable in the case of 1/4 wavelength backward-wave directional coupler with zero thickness conductor. It is also revealed that thicker metallization causes longer coupler length in the case of backward-wave symmetrical parallel coupled line directional coupler. The finite metallization thickness can be a new parameter for tight coupling in the design of backward-wave directional couplers, which enables us to design more accurate properties of monolithic microwave integrated circuits.

MLFMA for Computation of TM Scattering from Near Resonant Object (유사 공진형 물체에 대한 TM 전자파의 산란계산을 위한 MLFMA방법)

  • ;W. C. Chew
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.735-745
    • /
    • 1998
  • The method of moments has been widely used in the analysis of TM scattering problems. Recently, significant advances in the development of fast and efficient techniques for solving large problems have been reported. In such methods, iterative matrix solvers are preferred by virtue of their speed and low memory requirements. But for near resonant and strong multiple scattering problems, e.g., involving an aircraft engine inlet, a large number of iterations is required for convergence. In this paper, an efficient approximate inverse based preconditioner is used to reduce this number of iterations. By using the matrix partitioning method, the computational is used to reduce this number of iterations. By using the matrix partitioning method, the computational cost for obtaining the approximate inverse is reduced to O(N). We apply this preconditioner to an O(NlogN) algorithm, the multilevel fast multipole algorithm, for the aircraft engine inlet problem. The numerical results show the efficiency of this preconditioner.

  • PDF

Throughput Analysis of Network Coding in IEEE 802.11 Wireless LAN (IEEE 802.11 무선 랜에서의 네크워크 코딩 성능 분석)

  • Jang, Bo-Kyung;Song, Young-Ah;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.797-804
    • /
    • 2011
  • Network coding has recently emerged as an effective solution for multicast and broadcast communications in wireless ad hoc networks. In this paper, we propose a throughput performance model for IEEE 802.11 wireless networks with network coding. Specifically, we consider IEEE 802.11 DCF protocol and linear topology in which traffic sources are located at both ends and intermediate nodes act as relays performing network coding. The proposed analytic model has the form of nonlinear equations in terms of throughput of each node. The solution of the nonliear equations thus correspond to the end-to-end throughput. Extensive simulation experiments have been performed to validate accuracy of the proposed model. Numerical results show that the results of the proposed analytic model agree fairly well with the corresponding simulation results.

Design of a Magnetic Field Source for In Vivo Experiments at Extremely Low Frequency (생체 실험용 극저주파 자기장 발생 장치의 설계)

  • 김정호;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.871-877
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used fur in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed. The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code(for computation), the magnetic field distribution was obtained. The calculation result fur a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95 % of the magnetic field distribution was more than 60 % of each axis length.

Propagation and Crosstalk Characteristic Analysis of Pulse Shaped Signals on the Coupled Microstrip Lines (결합 마이크로스트립 선로상의 펄스형태 신호의 전파 및 누화 특성 해석)

  • Park, Sun-Keun;Kim, Nam;Rhee, Sung-Yup;Jang, Woo-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.516-524
    • /
    • 1997
  • The propagation properties of various pulse signal types(square pulse, Gaussian pulse, trapezoid pulse, RF pulse) on coupled microstrip lines are investigated. Numerical integration technique which has its accuracy and is easily simulated, is used to obtain the time domain response of pulse signals. Frequency-dependent characteristics of coupled microstrip line is obtained using Jansen's approximate equation. The propagation properties of pulse signal on coupled microstrip lines is analyzed regarding to its geometric structure (relative permittivity ${varepsilon}_r$ substrate height h, strip width w of the microstrip line) and pulse width ${\tau}$ of signal pulse. The simulation results show that space between two lines is very significant parameter in pulse distortion in comparison of any other parameters. The results of this paper are compatible to the trade-off determination of relative permittivity, substrate height, strip width and pulse width of signal pulse when a design of MIC and MMIC is necessary.

  • PDF

Analysis of Stability Condition and Wideband Characteristics of 3D Isotropic Dispersion(ID)-FDTD Algorithm (3차원 ID-FDTD 알고리즘의 Stability Condition과 광대역 특성 분석)

  • Kim, Woo-Tae;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.407-415
    • /
    • 2011
  • The stability condition and wideband characteristics of 3D ID-FDTD algorithm which has low dispersion error with isotropic dispersion are presented in this paper. 3D ID-FDTD method was proposed to improve the defect of the Yee FDTD such as the anisotropy and large dispersion error. The published paper calculated the stability condition of 3D ID-FDTD algorithm by using numerical method, however, it is thought that the examples were not sufficient to verify the stability condition. Thus, in this paper, various simulations are included in order to hold reliability under the conditions that the plane wave propagation is assumed with a single frequency and a wideband frequency. Also, the 3D ID-FDTD algorithm is compared to those that have the similar FDTD algorithm with ID-FDTD such as Forgy's method and non-standard FDTD method in a wideband. Finally, the radar cross section(RCS) for the large sphere with high dielectric constant is calculated.

A Study of Power Absorption in Human Head Exposed to Plane Wave (평면파에 노출된 인체 두부의 전력흡수 해석)

  • 이애경;조광윤;이혁재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.665-680
    • /
    • 1997
  • The specific absorption rate (SAR) distributions in various models of the human head have been analyzed when the models are exposed to 350 MHz and 900 MHz plane waves. The numerical analysis is performed with the finite-difference time-domain (FDTD) method. A homogeneous sphere including a cylinderical neck, a homogeneous head shaped model, and a heterogeneous realistic model are used as models of human head. The incident plane wave used for these calculations is propagating from the front to the back or from the back to the front of the head model, with its E-field vector orientation being parallel to the major length of the body. The specific findings are: 1) the average SARs of the three models are similar mutually but the local SARs of them differ greatly mutually; 2) the power is deposed more deeply in the head at 350 MHz, which is roughly the resonant frequency of a human head, than at 900 MHz; 3) for a plane wave propagating from the back, "hot spot" is found in the neck region, not in the head; 4) for a plane wave propagating from the front, "hot spot" is found in the nose at 900 MHz, and in the upper part of the lip and the jaw region at 350 MHz.

  • PDF

AC transport current loss analysis for anti-parallel current flow in face-to-face stacks of superconducting tapes

  • Yoo, Jaeun;Han, Young-Hee;Kim, Hey-Rim;Park, Byung-Jun;Yang, Seong-Eun;Kim, Heesun;Yu, Seung-Duck;Park, Kijun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.42-46
    • /
    • 2014
  • In this study we investigated ac transport current losses in the face to face stack for the anti-parallel current flow, and compared the electromagnetic properties with those of the single SC tape as well as those of the same stack for the parallel current path. The gap between the SC tapes in the stack varied in order to verify the electromagnetic influence of the neighbors when current flows in opposite direction, and the model was implemented in the finite element method program by the commercial software, COMSOL Multiphysics 4.2a. Conclusively speaking, the loss was remarkably decreased for the anti-parallel current case, which is attributed the magnetic flux compensation between the SC layers due to the opposite direction of the current flows. As the gap between SC tapes was increased, the loss mitigation became less effective. Besides, the current density distribution is very flat cross the sample width for the narrower gap case, which is believed to be benefit for the power electric system. These results are all in good agreement with those predicted theoretically for an infinite bifilar stack.

Analysis of Shielded Microstrip Line with Ground Aperture using Conformal Mapping Method (등각사상 법을 이용한 접지 면에 어퍼처를 갖는 차폐된 마이크로스트립 선로 해석)

  • Chun Dong-Wan;Lee Jin-Taek;Kim Won-Ki;Shin Chull-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.944-951
    • /
    • 2004
  • In this paper, we proposed the method of the characteristic impedance and effective dielectric constant calculations of the shielded microstrip line with ground aperture using conformal mapping method. This method has advantages that can calculate the transmission parameters without using any other numerical method because present the closed form equations. First of all, we supposed the signal propagate with the microstrip mode(Quasi-TEM) and calculated the capacitance divide by three sections and calculated the characteristic impedance and effective dielectric constant using calculated capacitances. From the HFSS simulation result, calculated result was very similar to the simulation result within the five percent error range.

Numerically Efficient Evaluation of MoM Matrix in Conjunction with the Closed-form Green s Functions in Analysis of Multi-layered Planar Structures (다층 평판구조체 해석시 Closed-form 그린함수와 함께한 모멘트 행렬의 효율적인 수치계산)

  • 이영순;김병철;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2001
  • When analyzing the scatting problem of multi-layered planar structures using closed-form Green's function, one of the main difficulties is that the numerical integrations for the evaluation of diagonal matrix elements converge slowly and are not so stable. Accordingly, even when the integration fur the singularity of type $e^{-jkr}/{\gamma}$, corresponding to the source dipole itself, is performed using such a method, this difficulty persists in the integration corresponding to the finite number of complex images. In order to resolve this difficulty, a new technique based upon the Gaussian quadrature in polar coordinates for the evaluation of the two-dimensional generalized exponential integral is presented. Stability of the algorithm and convergence is discussed. Performance is demonstrated for the example of a microstrip patch antenna.

  • PDF