• Title/Summary/Keyword: Electromagnetic Levitation System

Search Result 75, Processing Time 0.025 seconds

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

$H_\infty$ Control Apprach to a Magnetic Levitation System with Two Poles on $j_\omega$-Axis

  • Qi, Run-De;Tsuji, Teruo;Oguro, Ryuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.339-344
    • /
    • 1993
  • An H$_{\infty}$ control system design for a magnetic levitation system is presented. In the control system design, we consider the influence of both disturbances and uncertainties in the model. The main disturbances stem from the position sensors.The uncertainties are divided into electromagnetic and mechanical ones: the former are due to the gain change in the current amplifier, the influence of leakage flux and modelling error in the magnetic circuit and the latter are due to the changes of the mass and the moments of inertia of the vehicle. Therefore, the designed controller is indispensable to guarantee the robustness of this system for both stability and performance. The controller design is based on the standard H$_{\infty}$ optimal control problem. As the novel features in this paper :(1) there are two poles on j.omega.-axis in the control model;(2) an integrator is included in the controller so that equivalently there are three poles on j.omega.-axis in the model. Finally, several experiments and simulations are carried out to verify the high performance and robustness of the designed control system.m.

  • PDF

Six D.O.F Ultra Fine Stage using Electromagnetic Force Control (전자기력 제어를 이용한 6 자유도 초정밀 스테이지)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

Development of a Hybrid Haptic Master System Without Using a Force Sensor (힘 센서를 이용하지 않는 혼합형 햅틱 마스터 시스템의 개발)

  • Park, Gi-Hwan;Bae, Byeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1308-1316
    • /
    • 2001
  • A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.

Electromagnetic Properties of Bi System Superconductor for Magnetic Levitation Car Maglev

  • Lee, Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.102-105
    • /
    • 2007
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductors. The electromagnetic properties of the $Ag_2O$ doped and undoped BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers to the magnetic effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the $Ag_2O$ doped sample than that in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that Ag acts to increase the pinning centers of the magnetic flux, contributing to the occurrence of the electromagnetic properties.

Design and Analysis of a New Hybrid Electromagnetic Levitation System

  • Na, Uhn Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • A new permanent magnet biased hybrid maglev actuator is developed. Compared to the classical hybrid maglev actuators, the new maglev has unique flux paths such that bias fluxes are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The consumed power to operate this maglev system can also be minimized. The gravity load can be compensated with the static magnetic forces developed by the permanent magnet bias fluxes while external disturbances are controlled with the bidirectional AC magnetic forces developed by control fluxes by currents. 1-D circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Design of the Electromagnet of Maglev using Optimization Algorithm Based on Bacterial Survival Strategies (박테리아 생존전략기반 최적화 기법을 이용한 자기부상 이송장치의 전자석 설계)

  • Cho, Jae-Hoon;Kim, Young-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1045-1051
    • /
    • 2016
  • This paper introduces a new optimal design method using a bacterial survival strategies for a ectromagnet of Maglev transportation vehicle. Usually, an electromagnetic suspension which has more advantages than electro dynamic suspension is used in Maglev systems. However, the structural constraints must be considered in the optimal design of an electromagnet for electromagnetic suspend system. In this paper, the optimal design method of a electromagnet based on a bacterial survival strategies optimization algorithm to design the electromagnet satisfying the structural constraints. The effectiveness of the proposed method was verified by Matlab simulations and the simulation results show that the proposed method is more efficient than conventional methods.

Design of Fault Tolerant controller for Electromagnetic Suspension System (상전도 부상 시스템의 내고장성 제어기 설계)

  • Jang, Seok-Myeong;Seong, So-Yeong;Seong, Ho-Gyeong;Jo, Heung-Je
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.778-788
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a fault-tolerant control scheme with a dynamic compensator for the failure of the choppers, gap sensors and acceleration sensors in electromagnetic suspension system. The advantage of the proposed control method are demonstrated through simulation and experimental results for the levitation characteristics when the failures of the chopper and sensors occur, respectively.

  • PDF

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF