• Title/Summary/Keyword: Electromagnetic Imaging

Search Result 196, Processing Time 0.02 seconds

Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies (수리지질학 연구에 이용되는 대규모 끄는 방식 전기비저항 배열 자료의 1 차원 강력한 역산)

  • Allen, David;Merrick, Noel
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • The advent of towed geo-electrical array surveying on water and land has resulted in datasets of magnitude approaching that of airborne electromagnetic surveying and most suited to 1D inversion. Robustness and complete automation is essential if processing and reliable interpretation of such data is to be viable. Sharp boundaries such as river beds and the top of saline aquifers must be resolved so use of smoothness constraints must be minimised. Suitable inversion algorithms must intelligently handle low signal-to-noise ratio data if conductive basement, that attenuates signal, is not to be misrepresented. A noise-level aware inversion algorithm that operates with one elastic thickness layer per electrode configuration has been coded. The noise-level aware inversion identifies if conductive basement has attenuated signal levels so that they are below noise level, and models conductive basement where appropriate. Layers in the initial models are distributed to span the effective depths of each of the geo-electric array quadrupoles. The algorithm works optimally on data collected using geo-electric arrays with an approximately exponential distribution of quadrupole effective depths. Inversion of data from arrays with linear electrodes, used to reduce contact resistance, and capacitive-line antennae is plausible. This paper demonstrates the effectiveness of the algorithm using theoretical examples and an example from a salt interception scheme on the Murray River, Australia.

Implementation about measurement of the head SAR and variable parameter according to operation control mode in brain MR study with 1.5Tesia (1.57 BRAIN MRI검사에서의 작동제어모드를 통한 두부 SAR측정과 변화인자에 관한 고찰)

  • Lee, Kyu-Su;Sim, Hyun;Moon, Ji-Hoon;Oh, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.58-60
    • /
    • 2007
  • Magnetic Resonance Imaging(MRI) has become a very widely used medical procedur e. Clo.sed and open systems are typically used with static magnetic fields at or below 2 Tesla. BWhole body SAR(specific absorbsion rate) is the value of SAR averaged over the entire body of the patient over any period of 15 minutes. Head SAR is the value of SAR averaged over the head of the patient for any period of 10 minutes. SAR is a measure of the absorption of electromagnetic energy in the body' (typically in watts per kilogram (W/kg)). The normal operating mode comprises values of head SAR not higher than 3 W/kg. The second level controlled operating mode comprises values higher than 3 W/kg. Current FDA guidance limits the SAR in the whole body. including the head to a range of 1.5 to 4.0 W/kg, depending on the patient's clinical condition. SAR, limit restrictions are incorporated in all MRI systems. and domestic' s guidance limits the SAR in a part body. including the head to 3.2w/kg and less. The purpose of this study is to evaluate on change of head SAR in using MRI pulse sequence and to check if exceed 3.2(w/kg) level in domestic a part exposure through measured head SAR. 23 patient's the average head SAR of pulse sequence is that T2WI sagittal is 0.5375. T2WI axial(FSE) is 0.4817, T1WI axial(SE) is, 0.8179. FLAIR axial is 0.4580. GRE axial is 0.0077, Diffusion is 0.0824w/kg. The head SAR exposed per patient was proved 2.3845w/kg less than the international standard. Coefficient of correlation for the relations body weight and SAR or for the relations ETL(echo train length) and SAR is 1 value. Coefficient of correlation for the relations between TR(time to repeat) and SAR is -0.602 value. so SAR increased relative to weight body and ETL. But the relations between TR and SAR is negative definite.

  • PDF

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

Sensitivity Analysis and Estimation of the Depth of Investigation in Small-Loop EM Surveys (소형루프 전자탐사의 감도분석 및 가탐심도 추정)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.299-308
    • /
    • 2002
  • We have derived an analytical expression for the sensitivity of the frequency domain small-loop electromagnetic (EM) surveys over a two-layer earth in order to estimate the depth of investigation with an instrument having the source-receiver separation of about 2 m. We analyzed the sensitivities to the lower layer normalized by those to the upper half-space and estimated the depth of investigation from the sensitivity analyses and the mutual impedance ratio. The computational results showed that the in-phase components of the sensitivity to the lower layer dominates those to the upper layer when the thickness of the upper layer is less than 20 m, while the quadrature components are not sensitive to the lower layer over the entire frequency range. Hence we confirmed that the accurate measurement of the in-phase component is essential to increase the depth of investigation in the multi-frequency small-loop EM survey. When conductive basement of 10 ohm-m underlies the upper layer of 100 ohm-m, an accurate measurement of the in-phase components ensures the depth of the investigation more than 10 m even accounting a noise effect, from which we conclude that the small-loop EM survey is quite effective in imaging the conductive plume down to a considerable depth. On the other hand, in the presence of the resistive basement of 1,000 ohm-m, the depth of investigation may not exceed 5 m considering the instrumental accuracy, which implies that the application of the small-loop EM survey is not recommended over the resistive environment other than detecting the buried conductor.

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling (3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램)

  • Perez, Marlon;Hernandez, Daniel;Michel, Eric;Cho, Min Hyoung;Lee, Soo Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

Effects of Magnetic Resonance Imaging on the Human Body : Analysis of differences according to Dental Implant Material (자기공명영상이 인체에 미치는 영향 : 치아임플란트 재료에 따른 차이 분석)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.481-489
    • /
    • 2018
  • In MRI examination, when irradiating the human body with RF Pulse to acquire images, the portion of the irradiated RF Pulse energy is absorded into the human body, and this will affect the temperature of the human body. If a metal is inserted into the human body even if the same RF Pulse energy is applied, the SAR value increases and the body temperature changes due to the increase in the electromagnetic wave conductivity of the metal. So we measure and compared with the change in the SAR and temperature in the implant material of the dental implant in Brain MRI examinations. Experiments were performed on a human head model using a 64MHz and 128 MHz RF Pulse frequency generated by a 3.0 Tesla MRI apparatus. And then changed material of dental implants to Titanium and $Al_2O_3$. Using the XFDTD program, the changes in SAR and body temperature around the head were examined. When with Titanium the SAR value and temperature of Brain increased, but with $Al_2O_3$ showed lower SAR and temperature as compared with Titanium. The dental implants were low in SAR and temperature of the head in $Al_2O_3$, which are electrical insulators with low electrical conductivity, compared to Titanium, which is an electrical conductor. It is necessary to study the biologic effect of patient with brain MRI when titanium dental implant material is inserted in the future. Because the maximum value of SAR is much higher than the limit when dental implant material is Titanium. In addition, it is necessary to use an implant of $Al_2O_3$ material to reduce the SAR value and temperature of the Brain in Brain MRI examination.