• 제목/요약/키워드: Electromagnetic Finite Element Analysis

검색결과 448건 처리시간 0.025초

환형 무전극 램프의 광학적, 전자계적 해석 (Analysis of Optical and Electromagnetic Distribution of Ring-shaped Electrodeless Fluorescent Lamps)

  • 조주웅;최용성;김용갑;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.460-464
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours and is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by D simulation software operated at 250KHz and some specific conditions. Photometric characteristic of the ring-shaped electrodeless fluorescent lamp were investigated using LS-100 lightmeter and TA-0510 thermometer respectively.

전자기 및 구조 유한요소법을 이용한 브러시레스 전동기의 응력 해석 (Stress Analysis of Brushless Motor by Using Structural and Electromagnetic Finite Element Method)

  • 하경호;강경호;홍정표;장기찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.617-619
    • /
    • 2000
  • This paper deals with the mechanical stress analysis caused by the electromagnetic radial force and the design considering the stress. The link in an Interior Permanent Magnet Brushless Motor(IPM) have influence on the mechanical and magnetic performance. Therefore, it is necessary to determine the appropriate link thickness. The optimal geometry link is designed by using the coupled with structural and electromagnetic Finite Element Method.

  • PDF

유한요소법을 이용한 단상변압기권선의 운동특성해석 (Movement Characteristics Analysis of Single Phase Transformer Winding Using Finite Element Method)

  • 최명준;김형석;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.104-106
    • /
    • 1996
  • In this paper, the dynamic motion driven by electromagnetic force of transformer windings is modeled and its characteristics are numerically analyzed. The electromagnetic field is obtained using the 2D finite element method taking account of anisotropic property of iron core, and the electromagnetic force on the transformer winding is calculated from Lorenz's force formula using the field distribution result. The system motion equation driven by electromagnetic force and gravitational force is numerically analyzed using the 4-order Runge-Kutta algorithm. Above analyses procedure is applied to a single-phase core-type transformer to validate its algorithm.

  • PDF

힘의 방향성을 고려한 전자기 커플러의 위상 최적화 (Topology Optimization of an Electromagnetic Coupler Considering Force Direction)

  • 양승진;유정훈
    • 정보저장시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측 (Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer)

  • 안현모;한성진
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

고주파유도 급속 금형가열 과정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold)

  • 손동휘;서영수;박근
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

속도기전력을 갖는 전자력 방정식의 유한요소 해석 (Finite Element Analysis of Electromagnetic Field Equation with Speed E.M.E)

  • Hahn, Song-Yop
    • 대한전기학회논문지
    • /
    • 제36권4호
    • /
    • pp.252-258
    • /
    • 1987
  • Time periodic finite element solutions for sinusoidally excited electromagnetic field problems in moving media are presented. Solutions by the Galerkin method contain spurious oscillations when grid Peclet number is more than one. To suppress these oscillations an upwind finite element method using two different time periodic test functions is introduced. One is multiplied to second and first-order space derivative terma and the other to the time derivative term. Test functions are obtained from trial functions by adding or subtracting quadratic bias functions with appropriate scaling factors. Phase differences are considered between trial functions and bias functions. For simple interpretations of the phase differences, complex scaling factors are used. The proposed method is developed to give nodally exact solutions for uniform grid spacing in one dimensional problems. Based on the one dimensional results, a two dimensional upwinding scheme is also derived.

  • PDF

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

평판형 전자기 엑츄에이터의 집중매개변수 모델링 및 해석 (Lumped Parameter Modelling and Analysis of Flat Coil Actuator with Shorted Turn)

  • 황기일;김진호;이정훈
    • 한국자기학회지
    • /
    • 제20권4호
    • /
    • pp.149-152
    • /
    • 2010
  • 평판형 전자기 엑츄에이터는 이동코일과 가이드 사이의 마찰이 없기 때문에 초정밀 제품에 널리 사용된다. 전자기 엑츄에이터의 성능 검증에 가장 많이 사용되는 방법 중 한 가지는 유한요소해석 방법이다. 하지만 유한요소해석 방법은 해석 시간이 많이든다는 단점이 있다. 유한요소해석 방법의 대안으로 계산시간은 짧지만 높은 정확도의 해석 결과를 도출해 낼 수 있는 집중매개 변수모델 해석방법이 많이 사용되고 있다. 본 논문에서는 평판형 전자기 엑츄에이터의 집중매개변수 모델링을 생성하고 시뮬레이션을 통해 성능을 검증하고 그 결과를 유한요소해석 결과와 비교해 본다.