• Title/Summary/Keyword: Electromagnetic Finite Element Analysis

Search Result 448, Processing Time 0.02 seconds

Analysis of Electromagnetic Shielding Performance for a BiMODAL Tram using an Electromagnetic Concentration Index (전자파의 집중도를 이용한 바이모달 트램의 전자파 차폐 성능 분석)

  • Choi, Nak-Sun;Jeung, Gi-Woo;Kim, Nam-Kyung;Song, Myung-Kon;Lee, Kang-Won;Mok, Jai-Kyun;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1378-1384
    • /
    • 2011
  • In this paper, the electromagnetic shielding performance of a BiMODAL Tram is investigated by means of an electromagnetic analysis tool, called HFSS. For the purposed of doing this, first, three-dimensional finite element modeling for the tram including electronic devices and engine room is carried out. Then, for quantitatively assessing the electromagnetic shielding performance of the tram's body, concentration indexes for electric field magnitude and time-average stored electric energy are introduced. From numerical results, it is inferred that the tram's body can protect the electronic devices and engine room against external electromagnetic waves from 30 MHz to 100 MHz.

Heat Characteristics Analysis of Synchronous Reluctance Motor Using FEM Coupled Electromagnetic Field and Thermal Field

  • Lee, Jung-Ho;Jeon, Ah-Ram
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.138-142
    • /
    • 2010
  • This paper reports the development of an analysis method in a synchronous reluctance motor (SynRM) using the finite element method (FEM) coupled with the electromagnetic field of the Preisach model, which represents an additional thermal source due to hysteresis loss and a thermal field. This study focused on thermal analysis relative to hysteresis and copper losses in a SynRM.

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석)

  • Kwon, Ki-Tae;Han, Hwa-Taik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석)

  • Kweon, Gi-Tae;Han, Hwa-Taik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

Design Optimization Process for Electromagnetic Vibration Energy Harvesters Using Finite Element Analysis (유한요소 해석을 이용한 전자기형 진동 에너지 하베스터의 최적설계 프로세스)

  • Lee, Hanmin;Kim, Young-Cheol;Lim, Jaewon;Park, Seong-Whan;Seo, Jongho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.809-816
    • /
    • 2014
  • This paper presents a systematic optimization process for designing an electromagnetic vibration energy harvester using FEA(finite element analysis) to improve computational accuracy and efficiency. A static FEA is used in the optimization process where trend analysis in a short period of time is rather important than precise computation, while a dynamic FEA is used in the verification step for the final result where precise computation is more important. An electromechanical transduction factor can be calculated efficiently by using an approach to use the radial component of magnetic flux density directly instead of an approach to compute the flux density gradient. The proposed optimization process was verified through a case study where simulation and experiment results were compared.

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

Vibration Analysis for BLDC Motor by Electromagnetic Exciting Force (전자기 가진력에 의한 BLDC 전동기의 진동 특성 해석)

  • Chung, H.J.;Shin, P.S.;Woo, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.118-120
    • /
    • 2007
  • This paper deals with the vibration analysis of characteristics for BLDC motor by electromagnetic exciting force. Vibration analysis of electric machine is mainly divided into mechanical and electrical approach. However, it need to execute coupling analysis of mechanical and electrical computation because the vibration sources have relation to each other. Magnetic fields is calculated from Maxwell stress method with electromagnetic finite element method. And magnetic radial force is calculated from previous magnetic fields. With coupled electromagnetic and structure finite element, the vibratory behavior between the phase commutation advancing technique and pulse-width control is investigated in single phase brushless dc motor.

  • PDF

Absorbing Boundary Conditions and Parallelization for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 해석의 흡수경계조건 고찰 및 병렬화)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.67-76
    • /
    • 2022
  • Power and signal transmission using electromagnetic waves are essential in modern times, and a guided structure is needed to transmit electromagnetic waves efficiently through the desired path. This paper performed an electromagnetic simulation using the in-house code for the 2-D/3-D waveguide using the finite element method. The accuracy of the analysis was verified by comparing it with the results of HFSS, a representative electromagnetic wave simulation software. In addition, the performance of the Absorbing Boundary Condition (ABC), which is essential to truncate the infinite computational domain for computational electromagnetics, was analyzed. Finally, the parallelization technique was applied to accelerate the simulation speed, demonstrating performance improvement.

Analysis of Mechanical Stress Due to Magnetic Force and Thermal Expansion in Brsushless Motor (브러시레스 전동기에서 전자기적 가진력 및 열에 의한 기계적 음력해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Lee, Geun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.221-227
    • /
    • 2002
  • This paper deals with the mechanical stress analysis due to electromagnetic forces and the optimal design of the link considering the stress. The link in Interior Permanent Magnet Brushless Motor(IPM) have influence on both mechanical and magnetic performance. The decrease of the link thickness serves to improve the torque, whereas this decreases the strength of link. Therefore, it is necessary to determine the appropriate link thickness considering electromagnetic forces and thermal expansion. The effects of the variation of link thickness on the mechanical stress and the electromagnetic performance are analyzed by the structural and electromagnetic Finite Element Method. In addition, the mechanical structure design of the link is performed to reinforce the mechanical strength against magnetic forces while preserving a food magnetic torque.