• Title/Summary/Keyword: Electromagnetic Coupling Modeling

Search Result 27, Processing Time 0.025 seconds

Analysis on Induced Surge Voltage of Electric Car Line affected by Lightning in Rapid-Transit Railway System (고속철도시스템에서 낙뢰로 인해 전차선에 유도되는 서지전압의 해석)

  • Lee, Sung-Gyen;Lee, Kun-A;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.65-70
    • /
    • 2015
  • Lightning is one of hazards affecting the rapid-transit railway system. There are two effects, which are direct lightning surge to electric car line and induced lightning surge. Protection methods for the direct lightning surge are studied with various occasions, however, study of induced lightning surge is insufficient in spite of a large or small effects. In this paper, it is analysed the way that serge voltage is induced to electric car line by lightning strikes. By modeling the propagation process and the coupling phenomenon of electromagnetic wave produced by lightning strikes, it is achieved to make integrative circuit model combined with existing electric car model. The study is conducted into three different waveform of electromagnetic wave produced by lightning; rectangular wave, double exponential distribution wave, triangle wave. It is also simulated that the inducing serge is coupled to electric car line in an arbitrary location. The simulation results in that, when rapidly changing rectangular wave is supplied, maximum power is induced to electric car line.

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.

A UWB Antenna with the Adjustable Second Rejection Band Using a SIR (SIR을 이용한 제 2저지 대역 제어 가능 UWB 안테나)

  • Choi, Hyung-Seok;Choi, Kyung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1019-1024
    • /
    • 2012
  • In this paper, a UWB antenna using a SIR(Step Impedance Resonator) that eliminate signal interference at 5 GHz WLAN as the first rejection band and adjust the second rejection band is proposed. Unlike the unit impedance resonator, the second harmonic of SIR is decided according to step impedance. Therefore, To adjust the second rejection band, SIR is applied to UWB antenna. Also, the equivalent circuit of the antenna at first rejection band is presented and the equivalent modeling values of the SIR and the coupling value is obtained. The proposed antenna is satisfied to cover full UWB band with return losses less than -10 dB and has band rejection characteristic in 5 GHz WLAN band. The radiation patterns show +y directivity characteristics in H-plane and the group delay variations are within 1.0 ns.

Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter (진공차단부에서 발생하는 확산형 아크 수치해석)

  • Cho, S.H.;Hwang, J.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage (구동 전압을 고려한 3차원 등가자기회로방법에 의한 선형 직류전동기의 동특성 해석)

  • Ha, Kyung-Ho;Yeom, Sang-Bu;Hong, Jung-Pyo;Hur, Jin;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • In order to design the Linear DC Motor (LDM) with improved characteristics, transient and steady state analysis are required. furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis of LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the stater at each time step, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the Proposed method.

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.