• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 585, Processing Time 0.025 seconds

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

  • Chung, Y.D.;Yim, Seong Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

A Study on A Dimensional Active Phased Array Antenna (2차원 Quasi-optical 능동배열 안테나에 관한 연구)

  • 김준모;윤형국;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.514-522
    • /
    • 2000
  • In this thesis, a two-dimensional active phased array antenna without phase shifter is studied for two-dimensional beam scanning. A designed two-dimensional oscillator-type active array antenna, radiation elements and the oscillator circuits were combined with via-hole and coupled by slot on the opposite ground plane. The operating characteristics are analyzed and experimentally demonstrated , The two-dimensional $4\times4$ elements were designed for the proper coupling strengths and coupling phases by adjusting the width, length and offset position of slot-lines. The fabricated active phased array antenna shows the beam shift characteristics capable of scanning from $-17^{\circ}$ to $18^{\circ}$ with respect to broadside in one dimension, from $-5^{\circ}$ to $10^{\circ}$ in two dimension. The experimental results show that it is possible to use the oscillator-type active phased array antenna as a two-dimensional planar array antenna.

  • PDF

Design of Push-Push Oscillator Improving Coupling Characteristics of Resonators (공진기의 결합 특성을 개선한 Push-Push 발진기 설계)

  • Do, Ji-Hoon;Kim, Dae-Ung;Kim, Dae-Hui;Yun, Ho-Seok;Kang, Dong-Jin;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.241-247
    • /
    • 2007
  • This paper introduces a new type push-push harmonic dielectric resonator oscillator. Proposed oscillators are utilized by HDRO(Harmonic Dielectric Resonator Oscillator) which are combined in push-push structure. As a result, fundamental signal suppression ratio and output power of harmonic signal has been improved. The increase of phase noise is compensated by improving coupling characteristic between resonator and parallel microstrip line. The proposed push-push HDRO shows the output power of 9.32 dBm, the fundamental signal suppression of -47.2 dBc and phase noise of -99.86 dBc at 100 kHz offset frequency and 18.7 GHz center frequency.

Compact Dual-Band Bandpass Filter Using Two Dual-Mode Resonators (두 개의 이중 모드 공진기를 이용한 소형 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1447-1453
    • /
    • 2010
  • In this paper, the design and the fabrication of dual-band bandpass filter using two dual-mode resonators is presented. Dual-mode resonator using a short stub is miniaturized by inter-digital capacitor and stepped impedance. Two dual mode resonators are designed to have different resonant frequencies, one for the lower passband and the other for the upper passband. Transmission zero is positioned at low or high rejection bands with a sharp skirt characteristic. Dual-band operation can be achieved using dual feeding structure. For WLAN, the proposed filter at 2.45/5.25 GHz is designed and fabricated. The size of the filter is as compact as 1$10.83\;mm{\times}5.3\;mm$.

Compensation Algorithm of Beamforming Error for Wideband Conformal Array Antenna (광대역 컨포멀 위상 배열 안테나의 빔형성 열화 보상 알고리즘)

  • Yoon, Ho-Joon;Lee, Kang-In;Nam, Sang-Wook;Chung, Young-Seek;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.478-486
    • /
    • 2017
  • In this paper, we propose an algorithm for the wideband beamforming in a conformal phased array antenna by compensating the errors. For the wideband beamforming, we used the True Time Delay(TTD), which was fabricated on the RF circuit board to obtain long delay lines. Beamforming errors in the conformal array antenna are the mutual coupling between the array elements, the dispersive error in the TTD circuit, and the quantization error by the digital control. We apply the compensation algorithm to the conformal phased array antenna of wideband 2~4 GHz, and verify the usefulness by comparing the results with the experiment results.

Development of Board for EMI on Dash Camera with 360° Omnidirectional Angle (360° 전방위 화각을 가진 Dash Camera의 EMI 대응을 위한 Board 개발)

  • Lee, Hee-Yeol;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.248-251
    • /
    • 2017
  • In this paper, The proposed board is developed by EMI compliant Dash Camera with $360^{\circ}$ omni angle. The proposed board is designed by designing DM and CM input noise reduction circuit and applying active EMI filter coupling circuit. The DM and CM input noise reduction circuit design uses a differential op amp circuit to obtain the DM noise coupled to the input signal via the parasitic capacitance(CP). In order to simplify the circuit by applying the active EMI filter coupling circuit, a noise separator is installed to compensate the noise of the EMI source to compensate the CM and DM active filter simultaneously. In order to evaluate the performance of the board for the proposed EMI response, an authorized accreditation body has confirmed that the electromagnetic certification standard for each frequency band is satisfied.

Characteristics of a Microstrip Circularly-Polarized Aperture-Patch $8\times8$ Array Antenna (마이크로스트립 원형 편파 개구면-패치 $8\times8$ 배열 안테나의 특성)

  • 김인광;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1022-1032
    • /
    • 1999
  • The radiation characteristics of a microstrip circularly-polarized aperture-patch $8\times8$ array antenna are investigated at X-band. The radiator consists of a truncated square aperture on the ground plane with an inclined rectangular patch inside, and it is coupled by a microstrip line on the opposite side of the ground. The element spacing of the array was chosen as $0.8\lambda_0$so as to minimize the mutual coupling and maximize the gain. A corporate feed network was employed to distribute the power to each element through four Wilkinson and two T-junction dividers. Measurement results for the $8\times8$ array at 10 GHz showed a directivity of 26.3 dBi, a gain of 22.2 dBi, an axial ratio of 2.97 dB, and a side lobe level of -12.7dB. It was observed that when the array size increases, the directivity increases while the efficiency decreases.

  • PDF

Design of Ku-Band Tx/Rx Microstrip Patch Antenna for Satellite Communications (Ku-밴드 위성통신을 위한 송수신겸용 마이크로스트립 패치 안테나 설계)

  • 김규성;김태우;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1138-1147
    • /
    • 1999
  • In this paper, two types of $2\times2$ Rx/Tx microstrip patch antenna are proposed to implement Ku-band satellite communications. The single-fed dual resonance patch antenna as the first type derives perpendicular polarizations at two resonant frequencies from a single patch radiator, using aperture coupling via a bended single-feeding line and a cross-shaped slot. The double-fed dual resonance patch antenna as the second type implements dual resonance with mutually orthogonal polarizations by mixing the two feeding mechanisms of the microstrip line and the aperture coupling. Especially, in the double-fed dual resonance antenna case, air-gap is introduced to broaden the bandwidth. Through measurement, each of the two types of antenna was verified to function properly both Rx and Tx. The double-fed dual resonance antenna shows excellent performance in the bandwidth and the crosspolarization characteristics.

  • PDF

Resonant Transmission through C-Shaped and H-Shaped Small Apertures and the Mutual Coupling Effect between Two C-Shaped Apertures (C-형태와 H-형태의 소형 개구에 의한 공진 투과 및 C-형태 개구 간의 상호 결합 효과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1399-1405
    • /
    • 2012
  • Transmission cross section characteristics as a measure of transmission efficiency has been analyzed numerically for the H-shaped and C-shaped small apertures in the infinite conducting plane when illuminated by a plane wave. It has been found that C-shaped aperture has the larger transmission cross section than that of H-shaped aperture under the condition of the same perforated aperture area. Main attention has been focused on studying the mutual coupling effect between two C-shaped apertures on the transmission cross section characteristic. Parallel configuration which is composed of two C-shaped apertures arranged along the x-axis and collinear configuration which is composed of two C-shaped arrayed along the y-axis have been investigated from the viewpoint of enhanced transmission cross section characteristics.