• Title/Summary/Keyword: Electromagnetic(EM) leakage analysis

Search Result 3, Processing Time 0.016 seconds

Low-Frequency Electromagnetic Leakage Signal Analysis According to Fundamental Operations of Smartphones (스마트폰 기본 동작 모드에 따른 저주파 대역 누설 전자파 신호 특성 분석)

  • Lee, Young-Jun;Park, Heesun;Kwon, YoungHyoun;Lee, Jaeki;Choi, Ji-Eun;Cho, Sangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1108-1119
    • /
    • 2016
  • This paper presents the spectral analysis and radiation pattern of low-frequency electromagnetic(EM) leakage signals according to the fundamental operations of smartphones. The EM leakage signals generated by the activation of four I/O sensor modules such as a touch-screen, a camera, a microphone and a speaker are captured by the commercial near-field magnetic probe with 1cm spatial resolution. The analysis results show that the leakage of the EM wave occurs strongly around the activated I/O sensor modules, AP(Application Processor) and memory modules. Also, the distinguishable frequency characteristic is shown in each spectrum of EM leakage signals.

Circular Holes Punched in a Magnetic Circuit used in Microspeakers to Reduce Flux Leakage

  • Xu, Dan-Ping;Jiang, Yuan-Wu;Lu, Han-Wen;Kwon, Joong-Hak;Hwang, Sang-Moon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • Lower flux leakage designs have become important in the development of microspeakers used in thin and miniaturized mobile phones. We propose four methods to reduce the flux leakage of the magnetic circuit in a microspeaker. Optimization was performed based on the proposed approach by using the response surface method. Electromagnetic analyses were conducted using the finite element method. Experimental results are in good agreement with the simulated results obtained in one degree-of-freedom analysis from 100 to 5 kHz. Both the simulated and experimental results confirm that one of the proposed methods is much more effective in reducing flux leakage than the other methods. In the optimized method, compared with a default approach, the average radial flux density in the air gap decreased only by 5.5%, the maximum flux leakage was reduced by 28.6%, and the acoustic performance at primary resonance decreased by 0.45 dB, which gap is indiscernible to the human ear.

Application of Electrical and Small-Loop EM survey to the Identification of the Leachate at a Waste Landfill in Jeiu Island (제주도 쓰레기매립장 침출수 조사를 위한 전기 및 소형루프 전자탐사의 적용)

  • Song Sung-Ho;Yong Hwan-Ho;An Jung-Gi;Kim Gee-Pyo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.143-152
    • /
    • 2003
  • Among the various geophysical approaches to identify the leakage of leachate with conductivity variation, conventional electrical resistivity survey has been mainly used at waste landfill. We adopted small-loop electromagnetic (EM) survey using multi-frequencies in parallel with electrical resistivity survey to delineate the leakage of leachate through the shallow soil layer at a waste landfill in Jeju Island, and also with self-potential monitoring to detect the streaming potential produced by the movement of leachate. There were no evidences of leakage from waste landfill according to the results of the electrical resistivity survey and SP monitoring, and it was also true from the results of water quality analysis at stream around waste landfill periodically. On the other hand, the results of one-dimensional inversion of spatially-filtered small-loop EM survey data showed the anomalous zone of low resistivity with depth both around and inner waste landfill.