• 제목/요약/키워드: Electrolyzed-reduced water

Search Result 37, Processing Time 0.023 seconds

Evaluate of Electrochemical Characteristics in Electrolyzed Reduced Water

  • Park, Sung-Ho;Yun, Su-Jin;Kim, Jeong-Sik;Shin, Hyun-Su;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. Electrolyzed reduced water(ERW) has been regarded as a ideal antioxidative agent in recent years. ERW is produced by passing a diluted salt solution through an electrolytic cell, within which the anode and cathode are separated by membrane. It can be produced reactive materials in ERW near the cathode during the electrolysis of water. ERW have the following advantages over other traditional cleaning agents: effective antioxidative agent, easy preparation, inexpensive, and environmentally friendly. The main advantage of ERW is its safety and antioxidative effect. ERW with strong reducing potential can be used to remove dirt and grease from items such as cutting boards and other kitchen utensils. The primary aim of this study is the activation mechanism of oxidation reduction potentials, ion conductivity, pH, and electrochemical properties with reactive materials in ERW.

Quality Changes in Peeled Lotus Roots Immersed in Electrolyzed Water Prior to Wrap- and Vacuum-Packaging (전기분해수 침지처리 박피연근의 랩 및 진공포장 저장 중의 품질변화)

  • Park, Kee-Jai;Jeong, Jin-Woong;Lim, Jeong-Ho;Kim, Bum-Kun;Jeong, Seong-Won
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.622-629
    • /
    • 2008
  • This study investigated changes in quality characteristics of wrap- and vacuum-packaged peeled lotus roots treated with strong acidic electrolyzed acid water (SAEW pH 2.58, ORP 1,128 mV, HClO 105.0 ppm) or low alkaline electrolyzed water (LAEW pH 8.56, ORP 660 mV, HClO 73.8 ppm) as immersion liquids prior to packaging and storage at 5C. Immersion of peeled lotus roots in SAEW and LAEW reduced initial microbial load by about 1 log compared to treatment with tap water (TW). Hardness differences on storage were observed. However, reduction in PPO activity by electrolyzed water was not reproducible. Changes in Hunter's color value and the color difference value ($\Delta$) of peeled lotus roots immersed in 0.5% (w/v) sodium metabisulfite (SMS) and electrolyzed water were smaller than those of roots treated with TW prior to storage. Sensory characteristics measured during storage were best-preserved in lotus roots previously immersed in 0.5% (w/v) SMS or electrolyzed water, compared to TW. Immersionin electrolyzed water and vacuum packaging preserves the quality of peeled lotus roots in terms of microbial, visual, and sensory aspects, at levels comparable to those offered by storage after treatment with 0.5% (w/v) SMS.

Microbiological Cleaning Effect of Electrolyzed Acid Water by Containing Polysorbates (Polysorbates를 첨가한 전해산화수의 미생물학적 세정효과)

  • Jeong, Jin-Woong;Park, Kee-Jai;Jung, Sung-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1029-1034
    • /
    • 1999
  • To enhance the cleaning and sterilization effect of cooled electrolyzed acid water on lettuce, several kinds of polysorbates were used at various concentrations in immersion washing process. In case of the treatment containing polysorbate 20, coliform count of lettuce was reduced to about 1/40 level of that in non-treated lettuce. The treatment containing polysorbate 60 did not show a significant sterilization effect. Otherwise, the total and coliform counts of lettuce during immersion in electrolyzed acid water containing 1 ppm of polysorbate 80 was reduced to about 1/300 and 1/1,700 level of those in non-treated one. And, the changes of ORP(oxidation-reduction potential), pH and color value of lettuce in electrolyzed acid water containing 1 ppm of polysorbate 80 were not quite different during 60 min. immersion, but HCIO content decreased from 10.28 ppm to 8.51 ppm after 20 min. immersion. Also, total and coliform count of lettuce immersed in electrolyzed acid water containing 1 ppm of polysorbate 80 was lower to about 1/1,800 after 20 min. and 1/5,550 after 30 min, compared with non-treated lettuce.

  • PDF

Changes in Quality of Soybean Sprouts Washed with Electrolyzed Water during Storage (전기분해수 처리에 따른 콩나물의 저장 중 품질변화)

  • Yoo, Jae-Yeol;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.586-592
    • /
    • 2011
  • The storage quality of soybean sprouts washed with various electrolyzed waters was investigated. The washing solutions consisted of tap water (TW), sodium hypochlorite electrolyzed water (SHEW), and slightly acidic electrolyzed water (SAEW). The number of bacteria on the soybean sprouts after 5 min of exposure to TW, SHEW, and SAEW resulted in >0.5, 2.0, and 2.0 log CFU/g reductions, respectively. At both $4^{\circ}C$ and $25^{\circ}C$, the number of bacteria, weight loss ratio, and b value rapidly increased, and pH and L value rapidly decreased in soybean sprouts washed with TW. Whereas, the number of bacteria, pH, weight loss ratio, and color slowly changed in the soybean sprouts washed with SHEW and SAEW. Consequently, these results indicate that washing with electrolyzed water is an effective means of maintaining the quality and enhancing the shelf-life of soybean sprouts; both SHEW and SAEW reduced bacterial growth without affecting the other properties of soybean sprouts during storage.

Effect of Electrolyzed Acid-Water on Initial Control of Microorganisms in Kimchi (전해산화수를 이용한 김치의 초기 미생물 제어 효과)

  • 정승원;박기재;김영호;박병인;정진웅
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.761-767
    • /
    • 1996
  • To lessen the initial level of microorganisms, electrolyzed acid-water was used as washing and brine water in the manufacturing process. On the washing and salting processes, application of electrolyzed acid-water showed a possibility to lessen the microorganism level of Chinese cabbage effectively. Microbial level of Chinese cabbage was reduced to about 1/4 level by salting and washing process with electrolyzed acid-water while Chinese cabbage salted with tap water increased to about 1.7 times. And no coliform and E. coli were detected. However significant differences between seasoning mixtures prepared with electrolyzed acid-water and with tap water were not observed in microbial levels. Relatively low level of total count in kimchi prepared with electroyzed acid-water was kept until 15 days of fermentation at $10^{\circ}C.$ Any significant difference between them was not observed after 20 days of fermentation. pH and acidity were showed the same tendencies as microbial count.

  • PDF

Removal Effects of Microorganism and Pesticide Residues on Chinese Cabbages by Electrolyzed Water Washing (전기분해수 세척에 따른 배추의 미생물 및 잔류농약 제거효과)

  • Sung, Jung-Min;Park, Kee-Jai;Lim, Jeong-Ho;Jeong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.628-633
    • /
    • 2012
  • This study investigated the washing efficiency of electrolyzed water for the removal of microorganisms and pesticide residues from Chinese cabbage. Initial total bacteria and coliform counts were 6.64 and 3.56 log cfu/g respectively. After washing, total bacteria count of tap water (TW) were 5.97 log cfu/g and low alkaline electrolyzed water (LAlEW) and strong acidic electrolyzed water (SAcEW) were 1.63-4.67 log cfu/g. Especially SAcEW-100 was found to the most effective method of washing the cabbages. After washing, the coliform count was dramatically reduced. The removal rate of pesticide residues by NaClO treatment (36.93-50.13%) was greater than that of TW treatment (32.28-38.46%). The removal rate of LAlEW-100 and SAcEW-100 was 63.79 and 78.30% respectively, and was higher than those of TW and NaClO treatments. The vitamin C content of the Chinese cabbages after all treatments did not differ significantly. Consequentially, the electrolyzed water was found to be effective to remove bacteria and pesticide residues from Chinese cabbage without affecting quality.

The Effects of Electrolyzed Reduced Water on Blood and Organ Tissues of Mice (전해환원수 음용이 마우스의 혈액과 장기조직에 미치는 영향)

  • Jung, Han-Suk;Kim, Dong-Heui;Yoon, Yang-Suk;Teng, Yung-Chien;Chang, Byung-Soo;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.321-328
    • /
    • 2008
  • The main purpose of this study is to investigate the effects of electrolyzed reduced water (ERW) on blood components and electrolytes, as well as elected tissues on mice. The mice were supplied either tap water (control group) and ERW (experimental group) for two months. There were no significant different between two groups anatomically and physiologically. In the blood electrolyte study, the experimental group had less Na and BUN compared to the control group. In the blood component study, the experimental group had less neutrophiles and the control group had more lymphocytes. In histological study, no tissue changes were noticed in various organs, including the stomach, small intestine, heart, and liver tissues. In conclusion, ERW has no noticable side affects on blood and organ tissues, and might be safe to a living body.

Effect of Electrolyzed Water and Citric acid On Quality Enhancement and Microbial Inhibition in Head Lettuce (전해수와 구연산을 이용한 양상치의 품질 향상 및 미생물 저감화 효과)

  • Jin, Yong-Guo;Kim, Tae-Woong;Ding, Tian;Oh, Deog-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.578-586
    • /
    • 2009
  • This study was conducted to determine the effects of alkaline electrolyzed water (AIEW), acidic electrolyzed water (AcEW), 1% citric acid, and 100 ppm sodium hypochlorite, either alone or in combination with citric acid, in reducing the populations of spoilage bacteria and foodborne pathogens (Listeria monocytogenes and Escherichia coli O157:H7) on lettuce at various exposure times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and $50^{\circ}C$). In addition, the inhibitory effect of alkaline electrolyzed water combined with citric acid on the browning reaction during storage at $4^{\circ}C$ for 15 days was investigated. Compared to the untreated control, electrolyzed water more effectively reduced the number of total bacteria, mold, and yeast than 100 ppm sodium hypochlorite under the same treatment conditions. All treatments exposed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on head lettuce. The inactivation effect of each treatment on head lettuce was enhanced as the dipping temperature increased from 1 to $50^{\circ}C$, but there was no significantly difference at temperatures greater than $40^{\circ}C$ (p<0.05). The total counts of yeast and mold in head lettuce were completely eliminated when a combination of 1% citric acid and AlEW treatment was used at temperatures greater than $40^{\circ}C$. However, decreased reduction in L. monocytogenes (2.81 log CFU/g), and E. coli O157:H7 (2.93 log CFU/g) on head lettuce was observed under these treatment conditions. In addition, enhanced anti-browning effect was observed when the samples were subjected to both 1% citric acid and AlEW treatment at temperatures greater than $40^{\circ}C$ compared to when single treatments alone were used. Thus, this combined treatment might be considered a potentially beneficial sanitizing method for improving the quality and safety of head lettuce.

Efficacy of Electrolyzed Water and Aqueous Chlorine Dioxide for Reducing Pathogenic Microorganism on Chinese Cabbage (전기분해수 및 이산화염소수 처리에 따른 배추의 미생물 제어 효과)

  • Park, Seong-Soon;Sung, Jung-Min;Jeong, Jin-Woong;Park, Kee-Jai;Lim, Jeong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.240-246
    • /
    • 2012
  • This study evaluated the efficacy of strong acidic electrolyzed water (SAcEW), low alkaline electrolyzed water (LAlEW) and aqueous chlorine dioxide (ACD) for reducing pathogenic bacteria($Escherichia$ $coli$, $Bacillus$ $cereus$, $Salmonella$ Typhimurium, $Stapylococcus$ $aureus$) on Chinese cabbage. Artificially inoculated Chinese cabbage was immersed for 1, 5 and 10 min with TW, NaClO, EW and ACD. Generally, leaves showed more effective reduction than stems. Regarding the inhibitory effect, ACD treatment showed the highest effects rather than other treatments. When Chinese cabbage was immersed for 3 min in sterilized water, it was reduced to a minimum of 1.33 log CFU/g at LAlEW and a maximum of 4.70 log CFU/g at ACD. Compared to NaClO, ACD and LAlEW which showed a reduction of 3.2 log CFU/g ($Sal.$ Typhimurium) and 2.7 log CFU/g($B.$ $cereus$), respectively. Furthermore, the others had similar inhibitory effects compared to NaClO.

Effects of Seed Decontamination Treatments on Germination of Red Radish Seeds during Presoaking (적무 새싹종자의 소독제 처리에 의한 발아 시 미생물 제어효과)

  • Jun, So-Yun;Kim, Yun-Hwa;Sung, Jung-Min;Jeong, Jin-Woong;Moon, Kwang-Deog;Kwon, Joong-Ho;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1528-1534
    • /
    • 2010
  • The antibacterial effects of seed decontamination during presoaking before sprouting as an intervention step for eliminating foodborne pathogens on red radish seeds were evaluated. The effect of seed decontamination on seed germination rate was also evaluated. Red radish seeds were inoculated (at a level of 3 to 4 log CFU/g) with Listeria monocytogenes ATCC 19111 and decontaminated with 20,000 ppm calcium hypochlorite, 50 and 100 ppm chlorinated water, acidic electrolyzed water, low-alkaline electrolyzed water, and ozonated water for 6 hours. The control seeds were immersed in distilled water. The germination rate was measured on each treatment for 48 hours. Treatments with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were more effective than treatments with chlorinated water and ozonated water. Immersion in 20,000 ppm calcium hypochlorite resulted in the largest microbial reduction (more than 3 logs). Treatments with acidic and low-alkaline electrolyzed water reduced APC by 3 logs and L. monocytogenes counts by 2 logs. After sprouting, APC and L. monocytogenes counts on seeds treated with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were significantly lower than the control. The germination rate ranged from 93.5% to 97.7% except for 20,000 ppm calcium hypochlorite (from 82.3% to 84.8%) after 48 hours. Although the treatments tested in this study will not eliminate L. monocytogenes on inoculated red radish seeds, the results show that rapid growth of surviving cells during sprouting could be prevented if red radish seeds are given a presoak treatment used in combination with a disinfectant treatment of irrigation water.