• Title/Summary/Keyword: Electrolytic

Search Result 994, Processing Time 0.029 seconds

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation (코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성)

  • Kim, S.M.;Lee, T.H.;Kang, S.J.;Cho, Y.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.

Effect of Direct Current and Pulse Current on The Formation Behavior of Plasma Electrolytic Oxidation Films on Al Alloy (Al 합금의 플라즈마 전해산화 피막 형성 거동에 미치는 직류 및 펄스 전류의 영향)

  • Kim, Ju-Seok;Mun, Seong-Mo;Sin, Heon-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.29.1-29.1
    • /
    • 2018
  • 양극산화 표면처리 방법의 일종인 플라즈마 전해산화(PEO, Plasma electrolytic oxidation)는 금속 소재에 양극 전압을 인가하여 고경도의 산화 피막을 금속 표면에 형성시키는 표면처리 기술이다. PEO 공정은 피막의 국부적 유전체 파괴에 의한 아크의 발생을 동반하며, 형성된 산화 피막이 아크 발생에 의한 높은 열에 의해 결정화 되어 일반적인 양극산화 피막보다 우수한 경도와 내마모성을 가진다. 하지만 PEO 공정은 고전압을 필요로 하여 일반적인 양극산화 처리보다 소모되는 전력량이 많으며, 아크 발생에 의해 형성된 피막의 표면 거칠기가 높기 때문에 활용 분야가 제한되거나 후속 연마 공정을 필요로 하는 단점이 존재한다. 본 연구에서는 전류 파형이 알루미늄 합금의 플라즈마 전해산화 피막의 형성 거동에 미치는 영향을 직류 및 펄스전류를 사용하여 연구하였다. NaOH 및 $Na_2SiO_3$가 혼합된 전해액에서 직류 전류 밀도, 전압, 펄스폭을 달리하여 알루미늄 합금에 전류를 인가할 때 발생되는 아크의 거동, 형성된 산화 피막의 두께, 거칠기, 경도, 표면 및 단면 구조를 비교 분석하였다.

  • PDF

Effect of Electrolyte on Mechanical and Corrosion Properties of AZ91 Cast Magnesium Alloy Coated by Plasma Electrolytic Oxidation Method (플라즈마 전해 산화처리한 AZ91 주조마그네슘합금의 기계적 및 부식 특성에 미치는 전해질의 영향)

  • Kim, Bo-Sik;Lee, Du-Hyung;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.233-237
    • /
    • 2009
  • The effect of electrolyte on mechanical and corrosion properties of AZ91 magnesium alloy by plasma electrolytic oxidation (PEO) method was investigated. The coating layers formed in the silicate and the aluminate electrolytes showed porous structures. The small pores were randomly distributed on the coatings formed in aluminate electrolyte while the coatings formed in silicate electrolyte showed much bigger pores. In the aluminate electrolyte, the coatings were composed of Mg, MgO and $MgAl_2O_4$, whereas Mg, MgO, $MgAl_2O_4$ and $Mg_2SiO_4$ were identified in the coatings formed in silicate electrolyte. The hardness of coatings in the silicate electrolyte was higher than that of coating grown in the aluminate electrolyte. The AZ91 alloy coated in the silicate electrolyte had higher tensile strength and elongation than that coated in the aluminate electrolyte. In addition, the coatings formed in the silicate electrolyte showed much better corrosion resistance compared to the coatings formed in the aluminate electrolyte.

Effects of surface characteristics of electrolytic tinplate on frictional properties during ironing operaration of 2-piece can-making process (전기주석도금강판의 표면특성이 투피스캔 제관공정의 아이어닝 가공시 마찰특성에 미치는 영향)

  • 김태엽
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Non-passivated electrolytic tinplates withour conventinal chemical treatment self-oxidize in ambient atmosphere to from yellow stain on the outermost surface during the long-term storage. The degree of yellowness of the stain increased linerly with the oxide thickness due to the interfeefence color of the $SnO_2$ Even though the thickness of the oxide layer was very thin, less than 100$\AA$ , it exerts an undesirable influence on the can-making processes, particularly the stripping behavior after ironing. Investigations were carried out on the morphologies of the coating layer, the changes in oxide thickness during successive can-making processes and the averge friction coefficients with the different oxide thinkness. These oxide layers were broken up and distributed within the bulk tin coating during the ironing process. This redistribution of the oxide layer prvented smooth pressing-aside of the tin coating layer, resulting in an increase in the ironing friction coefficient. As the friction was increased, the residual stress along the can wall thinkness(i.e., the hoop stress) was also increased. Due to both the oxibe layer accumulation, which increased the friction coefficient, and the hoop stress, can stripping efficiency without roll-back is reduced.

  • PDF

The Application of Electropolishing for Removing Burrs and Residual Stress of Stamping Leadframe (스탬핑 리드프레임의 버와 잔류응력 제거를 위한 전해연마의 적용)

  • 신영의;김헌희;김경섭;코조후지모토;김종민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The lead frame, which is principal material used in semiconductor packaging, is required to be microscopic in leads and pitches to cope with miniaturization, thin film, large scale integrated. In addition, it is indispensable to eliminate residual stress and burrs occurring at manufacturing lead frames This thesis applied electrolytic abrasion in order to remove burrs and residual stress created during the stamp process. Electrolytic abrasion removed the burrs on the surface of lead frame. Removal of residual stress highly depends on the types of electrolyte solution. In case of perchloric system, electrolytic abrasion removed 23% of residual stress. Through removal of burrs and reducing residual stress, the reliability of lead frame was substantially improved.

  • PDF

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Anodic Oxide Films Formed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation Method in Electrolytes Containing Various NaF Concentrations

  • Moon, Sungmo;Kwon, Duyoung
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • The present work was conducted to investigate the effects of NaF concentration in phosphate and silicate-containing alkaline electrolyte on the morphology, thickness, surface roughness and hardness of anodic oxide films formed on AZ31 Mg alloy by plasma electrolytic oxidation (PEO) method. The PEO films showed flat surface morphology with pores in the absence of NaF in the electrolyte, but nodular features appeared on the PEO film surface prepared in NaF-containing electrolyte. Numerous pores ranging from 1 to $20{\mu}m$ in size were observed in the PEO films and the size of pores decreased with increasing NaF concentration in the electrolyte. Surface roughness and thickness of PEO films showed increases with increasing NaF concentration. Hardness of the PEO films also increased with increasing NaF concentration. It was noticed that hardness of inner part of the PEO films is lower than that of outer part of them, irrespective of the concentration of NaF. The low hardness of PEO films was explained by the presence of a number of small size pores less than $2{\mu}m$ near the PEO film/substrate interface.

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.

Design of High-Current Inverter-type Rectifier for Electrolytic Disinfection of Ship Ballast Water (선박 평형수 처리용 대전류 인버터 방식의 정류기 설계)

  • Cho, Won-Woo;Kim, Jin-Young;Kim, In-Dong;Nho, Eui-Cheol;Goh, Gang-Woo;Bae, Sang-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.430-439
    • /
    • 2011
  • As the import and export cargos across the world increase with global trade environments, the ecocide caused lots of small marine organisms in the ship's ballast water is a big issue. The implementation of the BWTS (Ballast water treatment system) thus needs low-voltage high-current rectifier for electrolytic disinfection. So this paper proposes a suitable high-current inverter-type rectifier for electrolytic disinfection of seawater and analyzes its output characteristics. It also suggests the practical design guidelines for the proposed rectifier in terms of power circuit and controller designs.

A study on the Surface Improvement of Fine-Micro Needles Applying Electrochemical Polishing (전해연마를 적용한 미세 마이크로 니들의 표면 향상에 대한 연구)

  • Jung, Sung-Taek;Kim, Hyun-Jeong;Wi, Eun-Chan;Kong, Jung-Shik;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.48-52
    • /
    • 2019
  • As the consumer market in the mold, automation and aerospace industries grows, the demand for chemical machining using on electrochemical polishing increases. To enhance the surface roughness and gloss of the micro-needle, we have studied for an electrochemical polishing. Electrochemical polishing requires the chemical reaction of solution and material according to the electrolyte and electrode. In this study, sulfuric acid(30%), phosphoric acid(50%), and DI-water(20%)were used as the electrolytic solution, and the electrolytic solution temperature used $58^{\circ}C$. Electrochemical polishing was carried out in experimental conditions, and the micro-needle experiment was carried out from the basic experiment to obtain the experimental conditions. Experimental results show that as the voltage and current increase, the surface roughness improved and the gloss is improved. So, the best result for this experiment was obtained in condition 6, which improved micro-needle.