• 제목/요약/키워드: Electrolyte matrix

검색결과 115건 처리시간 0.024초

복소임피던스법에 의한 인산형 연료전지용 전해질 매트릭스 특성 (Characteristics of Matrix Retaining Electrolyte in a Phosphoric Acid Fuel Cell Analyzed by A.C. Impedance Spectroscopy)

  • 윤기현;장재혁;허재호;김창수;김태희
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.189-196
    • /
    • 1995
  • Materials retaining electrolyte of a phosphoric acid fuel cell (PAFC) have been prepared with SiC powder to SiC whisker mixing ratios of 1:1, 1:2, 1:3, 1:4, 0:1 by a tape casting method. When 3wt% dispersant (sorbitan monooleate) is added to a matrix, the porosity of the matrix decreases a little while the bubble pressure and area of the matrix increase remarkably in comparison with no dispersant content. Effect of the electrolyte resistance and the polarization resistance on perfomance of a PAFC has been investigated using A.C. impedance spectroscopy. With the increase of whisker content, the electrolyte resistance decreases due to the increase of porosity and acid absorbancy, and the polarization resistance increases due to the increase of surface roughness. The polarization resistance affects current density predominantly at the higher potential than 0.7V becuase the polarization resistance is considrably larger than the electrolyte resistance. Both the electrolyte resistance and the polarization resistance affect current density near 0.7V of the fuel cell operating potential because they have similar values. The electrolyte resistance affects current density predominantly at the lower potential than the fuel cell operating potential because the electrolyte resistance is larger than the polarization resistance.

  • PDF

전해질 입자크기에 따른 용융탄산염 연료전지 전해질 지지체의 두께변화에 관한 연구 (The Effect of Carbonate Particle Size Distributions on the Thickness Change of MCFC Electrolyte Matrix)

  • 이형근;김남진;이덕열
    • 한국전기전자재료학회논문지
    • /
    • 제11권5호
    • /
    • pp.384-393
    • /
    • 1998
  • A mixed powder of electrolyte and matrix support materials with a proper proportion was used for the fabrication of an electrolyte matrix sheet. The purpose of this study is to reduce the large change in MCFC cell thickness occurring in the initial start-up period when separate sheets of electrolyte and support are used. A focus was put on how small the carbonate particles could be made. The particle size of the carbonate powder was controlled by ball milling and the distribution was measured using a particle size analyser. The thickness change was reduced to 20% by this approach, which could be compared to 27% observed in a conventional cell. The thickness changes of electrolyte matrix have linear relation sizes of carbonate powders.

  • PDF

용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구 (Cold Rolling Process for the Matrix Fabrication of the Mcfc)

  • 박상길;노창주
    • 수산해양기술연구
    • /
    • 제27권2호
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

비휘발성 용매(NMP)를 사용한 인산형 연료전지(PAFC)용 전해질 매트릭스 제조 및 특성 (Preparation and Characteristics of a Matrix Retaining Electrolyte for a Phosphoric Acid Fuel Cell Using Non-volatile Solvent, NMP)

  • 윤기현;양병덕
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Preparation and characteristics of a matrix retaining electrolyte using SiC whisker, PES binder, and NMP(n-methyl-2-pyrrolidone) as a non-volatile solvent for a phosphoric acid fuel cell were investigated. The conditions of binder and plasticizer, and the effects of substituting a volatile solvent by a non-volatile solvent were also studied. The minimum amount of the binder was about 17 wt% for the proper bubble pressure and surrounding SiC whiskers. And the maximum amount of the plasticizer was about 10wt% to be fitted into the polymer chain of the binder. The matrix prepared by using a non-volatile solvent needed longer time to dry, and its pore size was smaller compared with that of the matrix prepared by using volatile solvent. The small pore size resulted in decrease of the overall pore volume. The ionic conductivity in the condition of the same thickness was decreased due to decrease of phosphoric acid absorbancy. As the internal resistance of the electrolyte increased, the fuel cell performance slightly decreased.

  • PDF

인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향 (Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell)

  • 윤기현;최재열;장재혁;김창수
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF

매트릭스 두께가 MCFC 장기 성능에 미치는 영향 (The effect of the matrix thickness on the long term performance of MCFC)

  • 김윤영;한종희;윤성필;남석우;임태훈
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.170-179
    • /
    • 2005
  • Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.

고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성 (Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes)

  • 김미라;신원석;진성호;이진국
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Tape Casting법으로 제조한 인산형 연료전지 전해질 매트릭스의 미세구조 및 특성 (Characteristics and Microstructure of Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell Prepared by Tape Casting)

  • 윤기현;허재호;장재혁;김창수
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.375-380
    • /
    • 1994
  • Matrices retaining electrolyte in phosphoric acid fuel cell were prepared with SiC to SiC whisker mixing ratios of 1:0.5, 1:1, 1:1.5, 1:2, 1:3 by tape casting method. When viscosity of the slurry was 5.9 poise and the SiC to SiC whisker mixing ratios were 1:1, 1:1.5, 1:2, the ranges of porosity, acid absorbency and bubble pressure were 80~90%, 2.5~6 and 700~2200 mmH2O, respectively. Those ranges are acceptable for a practical electrolyte-retaining matrix. With increasing the mixing ratio of SiC whisker to SiC, the porosity and the vol.% of large pores in the main pore size distribution which is between 1 and 10 ${\mu}{\textrm}{m}$, increased rapidly. Impedance spectroscopy was measured to know characteristics of matrix inside and contact region of matrix to catalyst layer. When the SiC to SiC whisker mixing ratio was 1:2, hydrogen ions were transported in the matrix most effectively because of high ionic conductivity and low activation energy due to high acid absorbency in spite of high interfacial resistance. The cell current density of the cell made using the matrix was 220 mA/$\textrm{cm}^2$ at 0.7 V.

  • PDF

EFFECT OF CARBON FIBER SURFACE PROPERTIES ON FIBER-MATRIX ADHESION OF THE COMPOSITES

  • Kim Mun-Han;Park Su-Jin;Lee Jae-Rak;Choe Seon-Ung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.40-43
    • /
    • 1999
  • Electrochemical surface treatment of PAN-based carbon fibers in acidic electrolyte has been studied in increasing the surface functional groups on fiber surfaces for the improvement of fiber-matrix adhesion of the resulting composites. According to the FT-IR and XPS measurements, it reveals that the oxygen functional groups on fibers are largely influence on the composite mechanical behaviors, whereas the nitrogen functional groups are not affected in the system. In this work, a good correlation between surface functionality and mechanical properties is established.

  • PDF

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.