• 제목/요약/키워드: Electrolyte concentration

검색결과 685건 처리시간 0.026초

고체고분자전해질 계면에 접한 수소 산소 혼합 가스의 전압전류 특성 (Voltage-Current Profiles of Hydrogen-Oxygen Mixture Gas at Polymer Electrolyte Interface)

  • 차석렬;송정민;이웅무
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.129-135
    • /
    • 1996
  • 전해질로써 $Nafion^{(R)}$과 같은 고체고분자막과 수소/산소 가스가 계면을 형성할 경우의 전압전류특성을 측정하였다. 사용된 가스는 수소와 산소의 조성비를 달리하여 혼합한후 공급하였다. 사용된 전극은 상업용 탄소 기체 확산 전극을 이용하였으며 전극의 분산된 촉매와 전해질과의 접촉을 용이하게 하기위해 5% $Nafion^{(R)}$을 발라주었다. 직류전원 공급장치를 이용하여 산화 전극과 환원 전극에 걸어주는 전압을 조정하였다. 전압전류의 분석결과로부터 에너지효율은 수소/산소혼합물의 수소농도에 예민하게 의존함을 알 수 있었다.

  • PDF

Quasi-Solid-State Polymer Electrolytes Based on a Polymeric Ionic Liquid with High Ionic Conductivity and Enhanced Stability

  • Jeon, Nawon;Jo, Sung-Geun;Kim, Sang-Hyung;Park, Myung-Soo;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.257-264
    • /
    • 2017
  • A polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxypropyl) imidazolium iodide) (PMAPII), was synthesized as a single-iodide-ion-conducting polymer and employed in a gel polymer electrolyte. Gel polymer electrolytes prepared from iodine, 4-tert-butylpyridine, ${\gamma}$-butyrolactone, and PMAPII were applied in quasi-solid-state dye-sensitized solar cells (DSSCs). The addition of 16 wt.% PMAPII provided the most favorable environment, striking a compromise between the iodide ion concentration and the ionic mobility, which resulted in the highest conversion efficiency of the resulting DSSCs. The quasi-solid-state DSSC assembled with the optimized gel polymer electrolyte exhibited a relatively high conversion efficiency of 7.67% under AM 1.5 illumination at $100mA\;cm^{-2}$ and better stability than that of the DSSC with a liquid electrolyte.

Oryeong-san has Different Effects on Water and Electrolyte Balance by Routes of Administration

  • Ahn, You-Mee;Kho, Joung-Hyun;Lee, Jae-Yun;Kang, Dae-Gill
    • 동의생리병리학회지
    • /
    • 제26권3호
    • /
    • pp.338-343
    • /
    • 2012
  • Oryeong-san which was first recorded in Shanghanrun describing the treatments of acute febrile disease is one of the frequently used oriental medicines. Oryeong-san has been prescribed for the treatment of symptoms accompanied by edema. The purpose of this study was to examine the diuretic effects of Oryeong-san by different routes of administration. Oryeong-san (100 mg/kg body weight) was administrated by three different routes in Sprague-Dawley rats: intravenous infusion, intraperitoneal injection and oral intake. Oral intake of Oryeong-san significantly increased urinary volume and excretion of $Na^+$, $Cl^-$, and $K^+$ compared to vehicle-treated control group. The effects were concentration-dependent. Intravenously administrated Oryeong-san increased urinary volume and electrolyte excretion but without significance in hydrated (0.02 ml/min/rat for 90 min) anesthetized rats. Similarly, intraperitoneally injected Oryeong-san had no effects on water and urine electrolyte excretion compared with saline control group. These findings suggest that Oryeong-san has different effects on water and electrolyte balance by routes of administration.

Cycling Performance and Surface Chemistry of Si-Cu Anode in Ionic Liquid Battery Electrolyte Diluted with Dimethyl Carbonate

  • Nguyen, Cao Cuong;Kim, Dong-Won;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.8-13
    • /
    • 2011
  • Interfacial compatibility between the Si-Cu electrode and diluted ionic liquid electrolyte containing 50 vol.% of 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (MPP-TFSI) and 50 vol.% dimethyl carbonate (DMC) in a lithium cell and dilution effect on surface chemistry are examined. ex-situ ATR FTIR analysis results reveal that the surface of the Si-Cu electrode cycled in the diluted ionic liquid electrolyte is effectively passivated with the SEI layer mainly composed of carboxylate salts-containing polymeric compounds produced by the decomposition of DMC. Surface species by the decomposition of TFSI anion and MPP cation are found to be relatively in a very low concentration level. Passivation of electrode surface with the SEI species contributes to protect from further interfacial reactions and to preserve the electrode structure over 200 cycles, delivering discharge capacity of > 1670 $mAhg^{-1}$ and capacity retention of 88% of maximum discharge capacity.

전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰 (Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells)

  • 김두환;한치환;성열문
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

PbO2 전극을 이용한 산화제 생성과 염료 Rhodaime B 제거 (Formation of Oxidants and Removal of Dye Rhodamine B using PbO2 Electrode)

  • 박영식
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.194-199
    • /
    • 2011
  • This study has been carried out to evaluate the performance of $PbO_2$ electrode for the purpose of degradation of N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), generation of ozone and decolorization of Rhodamine B (RhB) in water. The effect of the applied current (0.2~1.2 A), electrolyte type (NaCl, KCl and $Na_2SO_4$), electrolyte concentration (0.0~2.5 g/L) and solution pH (3~11) were evaluated. Experimental results showed that RhB and RNO removal were increased with the increase of current, NaCl dosage and decrease of pH. Ozone generation tendencies appeared with the almost similar to the RhB and RNO degradation, except of solution pH (Ozone generation was increased with increase of pH). Optimum current for RhB degradation and consumption of electric power was 1.0 A. The RhB degradation with Cl type electrolyte were higher than that with the sulfate type. Optimum NaCl dosage for RhB degradation was 1.0 g/L.

Effect of NaOH Concentration on the PEO Film Formation of AZ31 Magnesium Alloy in the Electrolyte Containing Carbonate and Silicate Ions

  • Moon, Sungmo;Kim, Yeajin;Yang, Cheolnam
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.308-314
    • /
    • 2017
  • Anodic film formation behavior of AZ31 Mg alloy was studied as a function of NaOH concentration in 1 M $Na_2CO_3$ + 0.5 M $Na_2SiO_3$ solution under the application of a constant anodic current density, based on the analyses of voltage-time curves, surface appearances and morphologies of the anodically formed PEO (plasma electrolytic oxidation) films. The anodic film formation voltage and its fluctuations became largely lowered with increasing added NaOH concentration in the solution. Two different types of film defects, large size dark spots indented from the original surface and locally extruded white spots, were observed on the PEO-treated surface, depending on the concentration of added NaOH. The large size dark spots appeared only when added NaOH concentration is less than 0.2 M and they seem to result from the local detachments of porous PEO films. The white spots were observed to be very porous and locally extruded and their size became smaller with increasing added NaOH concentration. The white spot defects disappeared completely when more than 0.8 M NaOH is added in the solution. Concludingly it is suggested that the presence of enough concentration of $OH^-$ ions in the carbonate and silicate ion-containing electrolyte can prevent local thickening and/or detachment of the PEO films on the AZ31 Mg alloy surface and lower the PEO film formation voltage less than 70 V.

보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향 (Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells)

  • 조은애
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.277-282
    • /
    • 2010
  • 자동차용 고분자전해질 연료전지의 열화는 시동 또는 정지 시에 'reverse-current condition'이라 불리는 현상에 의해 촉진된다. 연료전지 자동차의 운전 종료 후 장시간동안 주차를 해 두면, 대기 중의 공기가 스택 내로 서서히 유입되어 시간이 경과함에 따라 산소분압이 점차 높아져 궁극적으로는 연료극과 공기극의 유로가 모두 공기로 충진된다. 이때 재시동하면서 연료극으로 수소가 공급되면, 연료극 유로 내에 수소와 공기가 공존하게 되고, 연료극에 공기가 존재하는 부위의 공기극에 1.4 V 이상의 높은 전압이 발생하는데, 이를 reverse-current condition 이라고 하며 공기극의 탄소담지체와 백금 촉매 산화의 원인으로 작용한다. 본 연구에서는 재시동시 스택 내에 존재하는 산소의 농도에 따른 열화 현상을 규명하고자 하였다.

직접 산화와 간접 산화용 전극의 Dye 제거 성능 비교 (Comparison of Dye Removal Performance of Direct and Indirect Oxidation Electrode)

  • 김동석;박영식
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.963-968
    • /
    • 2010
  • This study has carried out to evaluate the performance of direct and indirect oxidation electrode for the purpose of decolorization of Rhodamine B (RhB) in water. Four kinds of electrodes were used for comparison: Pt and JP202 (indirect oxidation electrode), Pb and boron doping diamond (BDD, direct oxidation electrode). The effect of applied current (0.5 ~ 2.5 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and electrolyte concentration (0.5 ~ 2.5 g/L), solution pH (3 ~ 11) and initial RhB concentration (25 ~ 125 mg/L) were evaluated. Experimental results showed that RhB removal efficiency were increased with increase of current, NaCl dosage and decrease of the pH. However, the effect of operating parameter on the RhB removal were different with the electrode type. JP202 electrode was the best electrode from the point of view of performance and energy consumption. The order of removed RhB concentration per energy lie in: JP202>Pt>Pb>BDD.

SPEEK/PWA/Silica 복합막의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes)

  • 오세중
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2529-2535
    • /
    • 2013
  • SPEEK/PWA/silica 전해질 복합막을 제조하기 위하여 졸-겔 방법을 이용하였다. 졸-겔반응의 전구체로는 TEOS를 사용하였으며 첨가제 겸 촉매로는 phosphotungstic acid(PWA)를 사용하였다. FE-SEM 분석을 통하여 PWA 및 silica 나노입자들은 고분자속으로 균일하게 분산되는 것을 확인할 수 있었다. SPEEK/PWA/silica 복합막의 함수율은 TEOS의 비율이 낮은 경우에는 TEOS의 증가에 따라 함수율이 감소하였지만 TEOS의 비율이 높은 경우에는 TEOS의 영향을 적게 받았다. SPEEK/PWA/silica 복합막의 이온전도도는 함수율의 변화와 유사한 경향을 나타내었으며 TEOS의 비율이 증가함에 따라 처음에는 이온전도도가 감소하다가 다시 증가하는 경향을 나타내었다. SPEEK/PWA/silica 복합막의 메탄올 투과도는 TEOS의 농도가 증가함에 따라 투과도가 감소하는 경향을 나타내었다.