• Title/Summary/Keyword: Electrolyte Amount

Search Result 278, Processing Time 0.024 seconds

Electrodeposition of $^{237}Np$ for Alpha Spectrometry and Application to Spent Nuclear Fuel Samples (알파분광분석법에 의한 $^{237}Np$ 정량 및 사용후핵연료 시료에의 적용)

  • Joe Kih-Soo;Kim Jung-Suck;Han Sun-Ho;Park Yeong-Jai;Kim Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • Alpha spectrometry was studied for the determination of $^{237}Np$ in spent nuclear fuel samples. The optimum condition for the electrodeposition of $^{237}Np$ was obtained as follows : for $1{\sim}1.5$ hour of deposition time, at the current intensity of $1.2{\sim}1.5$ A and at sodium sulfate electrolyte without organic additive. The deposition yield and its reproducibility on $^{237}Np$ was decreased as the amount of $^{237}Np$ decreased from 4.16 Bq down to 0.0264 Bq(1ng). The recovery yield of $^{237}Np$ determined by alpha spectrometry after separation in synthetic solution was $98.8{\pm}5.1%$(n=4). The contents of $^{237}Np$ in spent nuclear fuel samples were determined and the result showed an agreement within 10% of a difference between the measurement and the calculation.

  • PDF

Cu-Filling Behavior in TSV with Positions in Wafer Level (Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동)

  • Lee, Soon-Jae;Jang, Young-Joo;Lee, Jun-Hyeong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Through silicon via (TSV) technology is to form a via hole in a silicon chip, and to stack the chips vertically for three-dimensional (3D) electronics packaging technology. This can reduce current path, power consumption and response time. In this study, Cu-filling substrate size was changed from Si-chip to a 4" wafer to investigate the behavior of Cu filling in wafer level. The electrolyte for Cu filling consisted of $CuSO_4$ $5H_2O$, $H_2SO_4$ and small amount of additives. The anode was Pt, and cathode was changed from $0.5{\times}0.5cm^2$ to 4" wafer. As experimental results, in the case of $5{\times}5cm^2$ Si chip, suitable distance of electrodes was 4cm having 100% filling ratio. The distance of 0~0.5 cm from current supplying location showed 100% filling ratio, and distance of 4.5~5 cm showed 95%. It was confirmed good TSV filling was achieved by plating for 2.5 hrs.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

Usefulness of Gastric Emptying Time Test for Dog byUsing Radiopaque Marker KOLOMARK (비투과 표지자 KOLOMARK를 이용한 개의 위배출시간검사에 대한 유용성)

  • Cho, Young-Kwon;Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.4
    • /
    • pp.267-273
    • /
    • 2012
  • Abnormal gastric emptying time of dog by alien substance, neoplasm, pyloric antrum hyperplasia, stomach surgery, electrolyte imbalance, stomach-dilated torsion is clinically important as a digestive disease. Therefore study aims to provide basic data on the clinical usefulness of gastric emptying time test which uses radiopaque Kolomark developed in Korea rather than using the existing BIPS for the dog. 9 beagles were used for this experiment and their average weight was about 10.3kg with 2.5 year-old average age. For the test, fast for 12 hours was made without chemical sedation, and just before the test, 1 capsule of Kolomark was fed with 25% of daily feed amount, and we took photographs at ventrodorsal and right lateral position after 2, 4, 8 and 12 hours. As for interested reading area, we observed entire stomach from cardia to stomach pyloric part, and as for analysis method, we counted Kolomarks remained in the stomach per time and judged only P value below 0.05 to be meaningful by using Friedman Test. After feeding Kolomark through oral cavity, it took average 7.55 hours for the Kolomark to have escaped from the stomach to small intestine. In this study of gastrointestinal tract passing time after feeding matured dog, we used Kolomark and expect that it could be a basic data for normal gastrokinetic time.

Differences of Electrical Conductivity, Organic and Inorganic Constituents in Leakage from Aged and Non-aged Vegetable Seeds (채소 퇴화종자와 건전종자 침지용액의 전기전도도, 유기및 무기성분의 차이)

  • 민태기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.533-541
    • /
    • 1995
  • The leakage characteristics of electrical conductivity, inorganic constituents-K, Ca, Mg and Na, total sugar and total amino acid from the exudates of some vegetable seeds of viable and non-viable(artificially aged) were quantified to get basic information about the detection of the non-viable seeds. The crops studied were radish, cabbage, broccoli, onion and carrot. The time course electrolyte leakage was different from viable and non-viable seed of cruciferae but not sensitive in onion and carrot seed In inorganic constituents, potassium leakage was the greatest amount and difference between viable and non-viable seeds, but Ca, Mg and Na leakages were not as much differences as potassium. Total sugar as glucose and total amino acid as glycin leaked a lot more in aged radish, cabbage and broccoli seed than non-aged seed and the large differences were appeared after 4 hour imbibition. As a results, in general the leakages from the aged seeds were greater than from the non-aged seeds in most components tested but they were varied depending on species or varieties and components.

  • PDF

Analysis of the Metabolites of 1,2,4-Trimethylbenzene by Capillary Electrophoresis (모세관 전기영동법을 이용한 1,2,4-트리메틸벤젠 대사체의 분석)

  • Kang, Jong-Seong;Hong, Cheong-Hee;Lim, Jeong-Mi;Lee, Yong-Moon;Jang, Jae-Yeon
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 1999
  • The metabolites of 1,2,4-trimethylbenzene (TMB) were synthesized and determined by capillary electrophoresis (CE). The optimum conditions of CE for the separation and determination of 3,4-, 2,4-, 2,5-dimethylbenzoic acid and 3,4-, 2,4-, 2,5-dimethylhippuric acid from the rat urine were as following: the fused silica capillary($75{\mu}m$ i.d. ${\times}$ 36 cm length, 29 cm to detector) was used and kept at $15^{\circ}C$. The applied voltage was 10㎸ and compounds were detected at UV 210 mnm and 254 nm. The running electrolyte was 0.1 M phosphate buffer (pH 7) containing 15 mM of ${\beta}-CD$ and 3% of 2-propanol. The relative amount of the metabolite of 1,2,4-TMB in the rat urine was 56.7% of 3,4-isomer, 30.5% of 2,4-isomer and 12.8% of 2,5-isomer. This method can be applied to the analysis of TMB-metabolites in human urine.

  • PDF

Characteristics of Pr1-xMxMnO3(M=Ca, Sr) as a Cathode Material of Solid Oxide Fuel Cell (고체전해질형 연료전지용 Pr1-xMxMnO3(M-Ca, Sr) 산소극 재료의 특성)

  • Rim, Hyung-Ryul;Jeong, Soon-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1125-1131
    • /
    • 1996
  • Ca or Sr-doped $PrMnO_3$ were prepared for cathode material of solid oxide fuel cell. The characteristics such as the electrical conductivity and the cathodic overpotential were investigated as to doping contents. Also the reactivity with yttria stabilized zirconia of electrolyte, and the thermal expansion coefficient were studied. The prepared perovskite powder had the mean particle size of $2{\sim}5{\mu}m$, and the particle size and the surface area was out of relation to the doping content. When Ca doping amount of electrode material was 30mol%, the electrical conductivity was the highest value of $266S{\cdot}cm^{-1}$ at $1000^{\circ}C$, and also the polarization characteristics showed the best property. The reactivity between YSZ and Ca-doped $PrMnO_3$ at $1200^{\circ}C$ for 100hours was lower than that between YSZ and Sr-doped $PrMnO_3$. The thermal expansion coefficient of $Pr_{0.7}Ca_{0.3}MnO_3$ was $1.19{\times}10^{-5}K^{-1}$ in the temperature range of $300{\sim}1000^{\circ}C$, and this value was similar to that of YSZ, $1.15{\times}10^{-5}K^{-1}$.

  • PDF

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes (수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질)

  • Park, Sukeun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.50-54
    • /
    • 2012
  • In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.

Synthesis of Mesoporous Pt-Au Alloy Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 메조포러스 백금-금 합금전극제조)

  • Park, Eun-Kyung;Ahn, Jae-Hoon;Kim, Young-Soo;Kim, Kyung-Hwa;Baeck, Sung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.727-731
    • /
    • 2008
  • Mesoporous Pt-Au alloy films were successfully fabricated on ITO-coated glass by electrodeposition method using tri-blockcopolymer (P123) as a templating agent. The electrolyte consisted of 10 mM hydrogen hexachloroplatinate ($H_2PtCl_6$), 10 mM hydrogen tetrachloroaurate ($HAuCl_4$), and proper amount of P123. For comparison, control samples were electrodeposited without $HAuCl_4$ and P123. Film composition was determined by EDS(Energy Dispersive X-ray Spectroscopy), and the mesoporous structure was confirmed by TEM(Transmission Electron Microscopy). SEM(Scanning Electron Microscopy) was utilized to examine surface morphology, and it was observed that the addition of P123 affected the particle growth, resulting in the significant change of surface morphology. Methanol oxidation and CO oxidation were carried out to investigate electrocatalytic activities of synthesized samples. It was observed that the catalytic activity was strongly dependent on the film compositions. Compared with nonporous electrode prepared without P123 templating, mesoporous films prepared with P123 templating showed much higher catalytic activities and stability for both methanol oxidation and CO oxidation. These enhanced electrocatalytic activities were due to the high surface area and facilitated charge transfer of mesoporous films.