• 제목/요약/키워드: Electrolysis system

검색결과 211건 처리시간 0.025초

5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구 (A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System)

  • 김지혜;이은경;김민우;오건우;이정운;김우섭
    • 한국가스학회지
    • /
    • 제22권6호
    • /
    • pp.65-75
    • /
    • 2018
  • 풍력에너지는 낮에 비해 야간에 많은 잉여전력을 발생시키기 때문에 야간에 생산되는 전력은 버려지고 있는데, 이 문제를 해결하기 위해 풍력 등 재생에너지를 연계한 수전해 하이브리드 시스템 개발이 활발히 이루어지고 있다. 본 연구에서는 하이브리드 시스템 안전성 향상을 위해 국내 외 수전해 시스템 기준의 평가항목을 분석하였고, 평가 항목을 토대로 수전해 시스템의 안전성능 시험항목을 도출하였다. $5Nm^3/hr$급 수전해 시스템의 안전성능 평가를 위하여 시험항목 중 효율측정시험, 수소발생압력시험, 수소 순도시험을 평가하였다. 그 결과 수소발생량은 $5.10Nm^3/hr$, 스택효율은 $4.97kWh/Nm^3$로 산출되었고, 이때 발생한 수소의 순도는 99.993%로 국제기준 ISO 14687, SAE J2719에 명시된 순도보다 높은 순도의 수소를 생산하였음을 확인할 수 있었다. 본 연구 결과는 향후 수전해 시스템의 구축과 안전성능을 평가에 도움이 될 것이라고 기대한다.

Electrolysis of Physiological Salt Solution Generates a Factor that Relaxes Vascular Smooth Muscle

  • Song, Pil-Oh;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.217-223
    • /
    • 1998
  • Oxygen-derived free radicals have been implicated in many important functions in the biological system. Electrical field stimulation (EFS) causes arterial relaxation in animal models. We found that EFS applied to neither muscle nor nerve but to Krebs solution caused a relaxation of rat aorta that had been contracted with phenylephrine. In the present study, therefore, we investigated the characteristics of this EIRF (electrolysis-induced relaxing factor) using rat isolated aorta. Results indicated that EIRF acts irrespective of the presence of endothelium. EIRF shows positive Griess reaction and is diffusible and quite stable. EIRF-induced relaxation was stronger on PE-contracted aorta than on KCl-contracted one, and inhibited by the pretreatment with methylene blue. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, potentiated the EIRF-induced relaxation. $N^G-nitro-L-arginine$, NO synthase inhibitor, did not inhibit the EIRF-induced relaxation. Deferroxamine, but not ascorbic acid, DMSO potentiated the EIRF-induced relaxation. These results indicate that electrolysis of Krebs solution produces a factor that relaxes vascular smooth muscle via cGMP-mediated mechanism.

  • PDF

재생에너지기반 수전해 생산 수소와 바이오매스 가스화 하이브리드 공정의 기술 경제성 분석 (Techno-economic Analysis(TEA) on Hybrid Process for Hydrogen Production Combined with Biomass Gasification Using Oxygen Released from the Water Electrolysis Based on Renewable Energy)

  • 박성호;류주열;손근
    • 한국가스학회지
    • /
    • 제24권5호
    • /
    • pp.65-73
    • /
    • 2020
  • 본 연구에서는 재생에너지원의 에너지저장기술(Power to gas, P2G)로써 활용되는 수전해기의 가동률 향상과 산소 이용 극대화를 통해 경제성을 확보하기 위해서 수전해기에서 배출되는 산소를 바이오매스 가스화 공정에 공급하여 추가적인 수소 생산을 통해 수소 원가를 감소시키고, 재생에너지원의 출력 감소 시 수전해기를 바이오매스 가스화 공정의 산소 제조/공급 장치로 활용하는 공정을 제안하고, 이에 대한 정량적인 효율 분석과 경제성 분석을 수행하였다.

소형선박에 설치 가능한 해상기인 오염원 멸균용 에너지 자급형 전기분해 장치 개발 (Energy self-sufficient electrolysis apparatus for sterilization of portable toilet in small vessels)

  • 오승원;한민수;최해욱
    • 수산해양기술연구
    • /
    • 제48권3호
    • /
    • pp.269-276
    • /
    • 2012
  • Marine caused pollution occurs mostly near coastal area and its main cause was known to be human feces issued from small vessels. To sterilize liquid pollutants from portable toilets of small vessels, an electrolysis treatment is judged to be the most economic and stable method considering an environment of its use. In this paper, we presents an electrolysis apparatus which is the most appropriate for sterilizing pollutants from portable toilets of small vessels and derives the minimum operating time of the apparatus for sterilizing norovirus which is a main target of marine caused pollution sources. In order to utilize renewable energy, we designed an apparatus which generates a renewable energy from solar cells. As a result, we could confirm the applicability of the proposed system with the results from experiments in three cases of different weather conditions.

철 전기분해장치와 무산소/호기공정을 결합한 질소, 인제거 특성에 관한 연구 (A Characteristic of Nitrogen and Phosphorus Removal in Anoxic/Oxic Basins combined with Iron Electrolysis)

  • 김영규
    • 한국환경보건학회지
    • /
    • 제43권6호
    • /
    • pp.525-531
    • /
    • 2017
  • Objectives: The purpose of this experiment is to better understand the nitrogen and phosphorus removal ratio according to operating conditions in an iron electrolysis system consisting of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis consists of an iron precipitation reactor composed of iron plates in oxic and anoxic basins. We studied the interrelation coefficient between T-N and T-P removal rates and F/M ratio, and the C/N ratio and BOD removal rate. Results: The F/M ratio and the T-N and T-P removal rate per unit area have interrelation coefficients of 0.362 and 0.603, respectively. The removal rate per MLVSS and the T-N and T-P removal rate per unit area have respective interrelation coefficients of 0.49 and 0.59. Conclusions: The removal rate of T-N and T-P increased with the increasing F/M ratio in the influent, and they also linearly increased in proportion to the C/N ratio of influent and BOD removal rate of the reactor.

해수 전기분해를 적용한 배연 탈질 기술에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis)

  • 김태우;김종화;송주영
    • 한국응용과학기술학회지
    • /
    • 제29권4호
    • /
    • pp.570-576
    • /
    • 2012
  • 본 연구에서는 무격막식 전기분해 처리된 해수를 산화제로하는 NO 산화반응의 특성에 대해 실험적으로 살펴보았다. 폐순환 정전류 전기분해 시스템을 통해전해 시간이 길어질수록 전해수의 유효 염소농도와 온도, 염소산 이온의 비율이 증가함을 확인하였다. 전해수가 채워진 버블링 반응기에서 전해수의 유효염소농도와 온도에 비례하여 $NO_2$로 산화되는 NO의 양이 증가하였다. 또한 산화되어 생성된 $NO_2$는 전해수에 용해되어 $HNO_3{^-}$ 이온으로 존재함을 확인하였다.

양방향수전해 기반 수소제조용 초고온스팀 생산시스템의 엑서지 분석 (Exergy Analysis on the System of Superheated Steam (700℃, 3 atm) Production for the Reversible Electrolysis: Based Hydrogen Production)

  • 한단비;박성룡;조종표;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.235-242
    • /
    • 2018
  • Hydrogen can be produced by reforming reaction of natural gas (NG) and biogas, or by water electrolysis. In this study, hydrogen production through water-electrolysis needs superheated steam above $700^{\circ}C$ for high efficiency. The production method of hydrogen like this was recommended for the 4-type processes for superheated steam ($700^{\circ}C$, 3 atm) by Bio-SRF combustion furnace. The 4-type processes to produce superheated steam at $700^{\circ}C$ from the heat source of SRF combustion furnace was simulated using PRO II. The optimum process was selected through exergy analysis. The difference of process 1 and 2 is to the order of depressure and heating process to change $180^{\circ}C$ and 7 atm to $700^{\circ}C$ and 3 atm. Process 3 and 4 is to utilize 25% of steam to generate superheated steam and remaining to use for the power generation by steam generator.

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang;Jihee Kim;Churl Kyoung Lee;Kyungjung Kwon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.15-20
    • /
    • 2023
  • Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

지속 가능한 에너지 시스템 구축을 위한 전기분해 수소 생산 플랜트 초기 건설비용 예측 (Predicting Initial Construction Costs of Electrolysis Hydrogen Production Plants for Building Sustainable Energy Systems)

  • 강성욱;김준헌;박종화;조대명
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.257-268
    • /
    • 2024
  • Hydrogen serves as a clean energy source with potential applications across various sectors including electricity, transportation, and industry. In terms of policy and economic support, governmental policy backing and economic incentives are poised to accelerate the commercialization and expansion of hydrogen energy technologies. Hydrogen energy is set to become a cornerstone for a sustainable future energy system. Additionally, when constructing hydrogen production plants, economic aspects must be considered. The essence of hydrogen production plants lies in the electrolysis of water, a process that separates water into hydrogen and oxygen using electrical energy. The initial capital expenditure (CAPEX) for hydrogen production plants can vary depending on the electrolysis technology employed. This study aims to provide a comprehensive understanding of hydrogen production technologies as well as to propose a method for predicting the CAPEX of hydrogen production plants.

열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성 (Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal)

  • 유일한;서형탁
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.241-245
    • /
    • 2016
  • Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.