• Title/Summary/Keyword: Electrolysis cell

검색결과 191건 처리시간 0.022초

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가 (Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production)

  • 최미화;최진혁;이태희;유영성;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

평판형 고체산화물 연료전지의 양방향 수전해 특성 연구 (Study on Reversible Electrolysis Characteristic of a Planar Type SOFC)

  • 최영재;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.657-662
    • /
    • 2017
  • This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a $10{\times}10cm^2$ anode supported planar cell with an active area of $81cm^2$. In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of $700^{\circ}C$. The current-voltage characteristics for reversible electrolysis mode was measured at a current of ${\pm}26.7A$ under various $H_2O$ utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ${\pm}32.4A$. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

A Study on High Performance Converter Topology for Hydrogen Gas Generation Electrolysis System

  • 강태원;고유란;서용석;정준익;노도환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.196-197
    • /
    • 2010
  • This paper investigates a high performance converter topology for hydrogen gas generation electrolysis system. The proposed converter topology consists of full-bridge inverter, medium frequency transformer, and diode rectifier. Hydrogen gas generation electrolysis process considered in the paper is analyzed and characterized by its equivalent circuit. The electrolysis cell is modeled as effective resistance, capacitance, inductance, and internal emf voltage source. The proposed converter topology provides enhanced efficiency of hydrogen gas generation process under the operating condition of dc output voltage with high frequency ripple on it. The high performance operation of proposed converter is confirmed through the simulation with the electrolysis cell considered in the equivalent circuit model.

  • PDF

수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가 (Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis)

  • 박준호;임광섭;남상용
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.496-513
    • /
    • 2022
  • 본 연구에서는 음이온 교환막 수전해 시스템에 적용가능성을 확인하고자 상용 음이온 교환막인 FAA-3-50, Neosepta-ASE, Sustainion grade T, Fujifilm type 10의 관련 물성을 평가하였다. 음이온교환막을 이용하는 특성상 음이온교환기의 확인을 위하여 SEM/EDX를 이용하여 상용막의 모폴로지와 표면의 원소를 분석하여 상용막이 포함하고 있는 작용기의 분포를 확인하였다. 또한, UTM과 TGA를 이용하여 기계적 강도 및 열분해온도를 측정하여 수전해의 구동조건을 만족하는지 확인하였다. 음이온 교환막으로서의 성능을 파악하기 위하여 중요한 특성인 이온교환용량과 이온전도도를 측정하였으며, 알칼리 환경에서 구동되기 때문에 각각의 상용막의 내알칼리성을 확인하기 위한 내구성 테스트를 진행하여 비교하였다. 최종적으로 막-전극 접합체를 제조하여 수전해 single cell test를 진행하여 60℃, 70℃, 80℃의 온도 조건에서 cell 성능을 확인하였고 장기 cell test로 다른 온도에서 20 cycle 측정하여 수전해 성능을 비교하여 상용막의 음이온 교환막 수전해에 적용가능성을 비교하여 확인하였다.

염화마그네슘의 용융염전해 연구 (Fused Salt Electrolysis of Magnesium Chloride)

  • 이후인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.546-547
    • /
    • 2007
  • Magnesium is widely used as a lightweight alloy for car engine components and case of cellular phone. Extraction technologies of magnesium are divided to fused salt electrolysis process and thermal reduction process. In this study, electrolysis magnesium is prepared by fused salt electrolysis process with magnesium chloride. We compared two kinds of mixed salt at 7V. As a result, 47% of current efficiency was obtained by electrolyzing KCl/NaCl/$MgCl_2$ mixed salt bath at $760^{\circ}C$, and purity of the prepared magnesium was over 98%. With this study, we can scale up fused salt electrolysis device and accumulate basic data which will be needed for designing an electrolysis cell.

  • PDF

기질에 따른 미생물 전해 전지-혐기성 소화의 미생물 군집 특성 (Effect of Substrates on the Microbial Communities in a Microbial Electrolysis Cell and Anaerobic Digestion Coupled System)

  • 이채영;한선기
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.269-275
    • /
    • 2019
  • This study was conducted to evaluate the microbial communities in coupled system of a microbial electrolysis cell and an anaerobic digestion. Glucose, butyric acid, propionic acid and acetic acid were used as substrates. The maximum methane production and methane production rate of propionic acid respectively were $327.9{\pm}6.7mL\;CH_4/g\;COD$ and $28.3{\pm}3.1mL\;CH_4/g\;COD{\cdot}d$, which were higher than others. Microbial communities' analyses indicated that acetoclastic methangens were predominant in all systems. But the proportion of hydrogenotrophic methanogens was higher in the system using propionic acid as a substrate when compared to others. In coupled system of a microbial electrolysis cell and anaerobic digestion, the methane production was higher as the distribution of hydrogen, which was generated by substrate degradation, and proportion of hydrogenotrophic methanogens was higher.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.