• 제목/요약/키워드: Electroless silver plating

검색결과 35건 처리시간 0.027초

Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구 (Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating)

  • 황인성;남광현;정대원
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.574-580
    • /
    • 2022
  • Dendrite 형태의 구리 입자 표면을 은으로 무전해 도금을 하는 과정에서, 치환도금(displacement plating)과 화학 환원도금(reducing electroless plating)을 병용하여 다양한 silver-coated copper (Ag@Cu) 입자들을 제조하였다. Ag@Cu 입자들의 물리화학적 특성은 SEM-EDS, TGA, XPS, XRD 및 BET 등으로 분석하였으며, 환원반응에 의하여 코팅되는 은은 구리 입자 표면에 나노 입자 형태로 형성되는 것을 확인할 수 있었다. Ag@Cu 입자들을 에폭시 수지와 복합화하여 도전성 필름을 제조하고 그의 열적 안정성을 평가하였다. 치환 반응과 환원 반응의 차이가 Ag@Cu 필름의 초기 저항 및 열적 안정성에 미치는 영향에 관하여 연구하였다.

무전해 도금 코팅 공정을 이용한 은 박막의 두께 변화에 따른 트라이볼로지 특성 (Tribological Characteristics of Silver Electroless-Plating Process According to Thicknesses Variation)

  • 이현대;김대은
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.219-225
    • /
    • 2013
  • 본 연구에서는 무전해 도금 코팅방법을 이용하여 생성한 Ag 박막의 기계적 특성을 고찰하였다. 이 코팅방법은 화학적 반응을 통해 금속박막을 기판 위에 형성할 수 있는 공정으로써 비교적 간단하고 경제적이며 전기도금과 비교했을 때 도체뿐만 아니라 부도체에도 적용할 수 있다는 유리한 장점이 있다. 따라서 반도체에서부터 기계부품에 이르기까지 산업전반에 걸쳐 다양하게 적용되고 있는 코팅방법이다. 본 연구에서는 무전해 도금 공정의 변수에 따라 형성되는 Ag 박막의 기계적 특성을 파악하는데 중점을 두었다. 특히, 무전해 도금방법을 이용해 제작한 코팅 시편에 대해 도금시간에 따른 거칠기 및 두께에 대한 분석을 실시하였으며 AFM, SEM, Tribotester 와 같은 장비를 이용하여 트라이볼로지적 특성을 규명하였다.

포도당 환원제와 PdCl2 촉매를 사용한 무전해 은도금 PET 직물의 제조 (Preparation of Electromagnetic Wave Shielding Fabrics by Electroless Silver Plating using PdCl2 and Dextrose)

  • 김수미;송화순
    • 한국의류학회지
    • /
    • 제32권2호
    • /
    • pp.319-327
    • /
    • 2008
  • The purpose of this study is to propose the development of high quality electromagnetic wave shielding fabrics. Silver nitrate is used for polyester fabric as an electromagnetic wave shielding material. The effects of activators and electroless silver plating condition on the evenness and adhesion of silver to fabrics, are observed through the SEM micrographs. Surface morphology and wash-ability are measured using SEM. The results are as follows: The optimum weight loss by alkaline hydrolysis of polyester fabrics is about 20%. The optimum concentration of $SnCl_2$ and $PdCl_2$in catalyst reaction using $PdCl_2$ as an activator is 2.5g/L and 0.5g/L, respectively. The optimum concentration of dextrose to improve adhesion between the silver plating and fabrics is 45g/L. The optimum concentration of silver nitrate in the catalyst reaction, using $PdCl_2$ as an activator is 56g/L, respectively. The optimum plating temperature and time are $15^{\circ}C$ and 30minutes, respectively.

무전해 은도금층과 전기도금층의 형성에 관한 연구 (A Study on he Electroless Deposits and Electrodeposits)

  • 임종주;민병승;정원섭;김인곤
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.273-280
    • /
    • 2000
  • Silver was deposited on glass by electroless plating and electroplating. Surface properties were investigated using the AFM. Crystal structure of deposit layers was confirmed by TEM and XRD. Electroplating is performed by DC plating and pulse plating, respectively. This study resulted in followings, first, deposit of electroless plating showed fine grain and was similar to the amorphous structure. Second, electrodeposit on the electroless layer was revealed following results ; (1) more uniform layer and finer grains were obtained with increasing frequency (2) more isotropic structure was obtained with increasing frequency (3) finer grains at 25% duty cycle was obtained (4) grain size and roughness of the silver deposit was decreased with increasing frequency.

  • PDF

무전해 도금법을 이용한 코어 셸 구조의 Cu-Ag분말 제조 (Preparation of Cu-Ag Powder having Core-Shell Structure by Electroless Plating Method)

  • 김종완;이혁희;원창환
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.47-52
    • /
    • 2009
  • Cu-Ag powder having Core-Shell structure was prepared from by electroless plating method using agents such as $AgNO_3$, $NH_{4}OH$, Hydroquinone. Ag coated copper powders were analyzed using scanning electron microscopy(SEM) and energy dispersive X-ray spectrometer(EDX). The silver coating layer of copper powder was affected from various reaction conditions such as molar ratio of $NH_{4}OH$, $AgNO_3$, and pulp density. Free silver was generated below 0.1M or 0.3M and above of $NH_{4}OH$ mole ratio. Silver coating layer thickened as addition of $AgNO_3$. When the pulp density reached 12% with 0.2M $NH_{4}OH$, and 0.15M $AgNO_3$ at $4^{\circ}C$, silver was homogeneously distributed around the copper particles and free silver particles were not generated.

결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구 (The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells)

  • 김민정;이수홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

은도금 중공미세구를 이용한 경량 전파흡수체의 제조 (Fabrication of Light Weighted Microwave Absorbers Using Silver-Coated Hollow Microspheres)

  • 김욱중;김선태;김성수;권순길;안준모;김근홍;천창환
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.941-946
    • /
    • 2001
  • Conductive microspheres with a density of 0.2 g/cc were fabricated by electroless silver plating for application to the light-weighted microwave absorbers. The silver plating was conducted with the variation of plating conditions (sensitizing condition, $AgNO_3$, concentration, amount of reducing agent). Specimens have very low electro-resistivity. Under an optimum processing condition, conductive microspheres with uniform silver plating layer can be produced. Rubber-sphere composites were fabricated and their microwave absorbing properties were measured by HP8722D Network Analyzer. It was found that the lower the electrical resistance of microsphere, the better the microwave absorbing properties. Feasibility of microwave absorbers using this microspheres can be demonstrated with the result of microwave reflection loss of -15 dB and thickness of 1.44 mm.

  • PDF

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

무전해 도금법에 의한 전자파 차단 의류소재의 제조 (Preparation of Electromagnetic Wave Shielding Fabrics by Electroless Plating)

  • 김수미;송화순
    • 한국의류학회지
    • /
    • 제29권1호
    • /
    • pp.149-156
    • /
    • 2005
  • The purpose of this study was to produce the high quality of electromagnetic wave shielding fabrics. In this study, we have produced polyester fabrics by electroless Ag plating. The untreated polyester was etched with $4\%$ NaOH solution added accelerant(Benzyl Dimethyl Dodecyl Ammonium Chloride) then it was catalyzed by $SnCl_2$ solution and activated by $PdCl_2$ solution. Electroless Ag plating was carried out by changing conditions such as temperature. time, weight loss rate of polyester and kind of reducing agents. The electromagnetic wave shielding effectiveness of polyester fabric by electroless Ag plating was measured by RF Impedance Analyzer and element of electromagnetic wave shielding substance was measured using Electron probe micro analyzer. The results were as follows; The plating bath using potassium sodium tartrate by reducing agent was excellent electromagnetic wave shielding effectiveness. Element of electromagnetic wave shielding substance was silver. Electromagnetic wave shielding effectiveness was shown over 64dB at the temperature of $40^{\circ}C$, treating time 30min., weight loss rate $20\%$.

ELECTROCHEMICAL STUDY OF ELECTROLESS PLATING OF SILVER

  • Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.447-451
    • /
    • 1999
  • Silver has the highest electrical conductivity of all metals and consequently this property is an attractive feature which makes it a leading candidate for use in electronic devices. The research conducted was focused primarily on the development of a process for obtaining a deposited silver-coating onto alumina, for applications related to electrical-conducting devices and, ancillarily, catalysts. Alumina balls and plane substrates were utilized for the investigation. The coating process employed an aqueous ammoniacal silver-nitrate electrolytes with a formaldehyde solution as the reductant. Modifying additives-an activator which would be expected to promote good deposition-characteristics onto the (dielectric) substrate and an inhibitor which would obviate homogeneous reduction (precipitation) of silver was observed when the activator-containing silver-electrolyte reductant constituents were combined. However, the silver-electrolyte/reductant system with inhibitor could be employed (at 8$0^{\circ}C$) to achieve a viable (subject to future research optimization) coating on alumina. The influence of the processing temperature on the deposition process was delineated during the course of the research. The morphology of the deposited-silver on the alumina balls was assessed by SEM imaging. A tape-peel test was employed, with the plane substrates, to semi-quantitatively characterize the adhesion to the alumina.

  • PDF