• Title/Summary/Keyword: Electroless gold

Search Result 71, Processing Time 0.031 seconds

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.

Drop reliability evaluation of Sn-3.0Ag-0.5Cu solder joint with OSP and ENIG surface finishes (OSP.ENIG 표면 처리된 기판과 Sn-3.0Ag-0.5Cu 솔더 접합부의 낙하충격 신뢰성 평가)

  • Ha, Sang-Ok;Ha, Sang-Su;Lee, Jong-Bum;Yoon, Jeong-Won;Park, Jai-Hyun;Chu, Yong-Chul;Lee, Jun-Hee;Kim, Sung-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The use of portable devices has created the need for new reliability criterion of drop impact tests because of the tendency to accidentally drop in the use of these devices. The effects of different PCB surface finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) and high temperature storage (HTS) test on the drop reliability were studied. Various drop test conditions were used to evaluate a drop reliability of assemblies to endure such impact and shock load. In the case of the as-reflowed samples (no HTS test), the SAC/OSP boards exhibited a better drop impact reliability than that of SAC/ENIG. However, the reverse was true if HTS test is performed. In addition, significant decrease of drop reliability was observed for both SAC/ENIG and SAC/OSP assemblies after HTS test. It was also observed that the thickness of intermetallic compound layer do play an important role in the brittle fracture of drop test.

  • PDF

A study of properties for phosphorous content of ENIG against Sn-3Ag-0.5Cu solders (Sn-3Ag-0.5Cu solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Park, Chang-Sik;Kim, Min-Ju;Heo, Cheol-Ho;Kong, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.24-24
    • /
    • 2009
  • ENIG(Electroless Nickel Immersion Gold) is the surface treatment method that is used most widely at fine pitch's SMT and BGA packaging process. In this paper, we have studied the effect of P content variation during ENIG process on those phenomena related to the solder joint. The effect of P content was discussed using the results obtained from FE-SEM, EPMA, EDS and FIB. Finally, it was concluded that the more P-content in Ni layer, the thicker P-rich layer.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Mechanical Reliability Evaluation of Sn-37Pb Solder/Cu and Sn-37Pb Solder/ENIG Joints Using a High Speed Lap-shear Test (고속 전단시험법을 이용한 Sn-37Pb/Cu 와 Sn-37Pb/ENIG 솔더 접합의 기계적신뢰성 평가)

  • Jeon, Seong-Jae;Hyun, Seung-Min;Lee, Hoo-Jeong;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.250-255
    • /
    • 2008
  • This study utilized a high speed lap-shear test to evaluate the mechanical behavior of Sn-37Pb/Cu and Sn-37Pb/Electroless Nickel immersion Gold under bump metallization solder joints under high speed loading and hence the drop reliability. The samples were aged for 120 h at different temperatures ($120^{\circ}C,\;150^{\circ}C,\;170^{\circ}C$) and afterward tested at different displacement rates (0.01 mm/s to 500 mm/s) to examine the effects of aging on the drop life reliability. The combination of the stress-strain graphs captured from the shear tests and identifying a fracture mode dominant in the samples for different strain rates leads us to conclude that the drop reliability of solder joints degrades as the aging temperature increases, possibly due to the role of the IMC layer. This study successfully demonstrates that the analysis based on a high speed lap-shear test could be critically used to evaluate the drop reliability of solder joints.

  • PDF

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

Reliability Investigation and Interfacial Reaction of BGA packages Using the Pb-free Sn-Zn Solder (Sn-Zn 무연솔더를 사용한 BGA패키지의 계면반응 및 신뢰성 평가)

  • Jeon, Hyeon-Seok;Yun, Jeong-Won;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.25-27
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu and ENIG (Electroless Nickel/Immersion Gold) pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Sn-9Zn/ENIG, the shear strength remained nearly constant in spite of aging for 1000 hours at $150^{\circ}C$. On the other hand, in the case of the Sn-9Zn/Cu, the shear strength significantly decreased after aging at $150^{\circ}C$ for 100hours and then remained constant by further prolonged aging. Therefore, the protective plating layer such as ENIG must be used to ensure the mechanical reliability of the Sn-9Zn/Cu joint.

  • PDF

Effect of Surface Finish on Mechanical and Electrical Properties of Sn-3.5Ag Ball Grid Array (BGA) Solder Joint with Multiple Reflow (Sn-3.5Ag BGA 패키지의 기계적·전기적 특성에 미치는 PCB표면 처리)

  • Sung, Ji-Yoon;Pyo, Sung-Eun;Koo, Ja-Myeong;Yoon, Jeong-Won;Shin, Young-Eui;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.261-266
    • /
    • 2009
  • The mechanical and electrical properties of ball grid array (BGA) solder joints were measured, consisting of Sn-3.5Ag, with organic solderability preservative (OSP)-finished Cu pads and Electroless Nickel/Immersion Gold (ENIG) surface finishes. The mechanical properties were measured by die shear test. When ENIG PCB was upper joint and OSP PCB was lower joint, the highest shear force showed at the third reflow. When OSP PCB was upper joint and ENIG PCB was lower joint, the highest shear force showed at the forth reflow. For both joints, after the die shear results reached the highest shear force, shear force decreased as a function of increasing reflow number. Electrical property of the solder joint decreased with the function of increasing reflow number. The scanning electron microscope results show that the IMC thickness at the bonding interface gets thicker while the number of reflow increases.

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

Development and Testing of CdZnTe Detector for Pocket Surveymeter (CdZnTe 검출기를 이용한 개인용 Pocket Surveymeter의 제작 및 특성)

  • Lee, Hong-Kyu;Kang, Young-Il;Choi, Myung-Jin;Wang, Jin-Suk;Kim, Byung-Taik
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In this paper, we discussed the fabrication and characterization of bulk type CdZnTe detector for pocket surveymeter. The resistivity of CdZnTe single crystal grown by the High Pressure Bridgman method is in the mid of $10^9$ ohm-cm. The detector structure is Au/CdZnTe/Au and gold electrode is formed by electroless deposition method. Resolutions of 4.8keV and 2.2keV were observed at 22.2keV line of $^{109}Cd$ and 59.6keV line of $^{241}Am$ at room temperature, respectively. We also constructed the small size pocket surveymeter using home made CdZnTe detector. It shows the good linearity over a range from 1mR/hr to 10R/hr with deviation less than 5%. The sensitivity of the surveymeter developed is $2.2{\times}10^3 cps/Rad\;hr^{-1}$ for the 662keV of $^{l37}Cs\;{\gamma}-ray$.

  • PDF