• Title/Summary/Keyword: Electrokinetic soil remediation

Search Result 107, Processing Time 0.022 seconds

Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique (동전기를 이용한 유수지 오염 퇴적토내 Cd, Pb 및 Cr제거)

  • Shin, Hyun-Moo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.68-77
    • /
    • 2009
  • For the reservoir sediment highly contaminated with total Cr, Pb, and Cd, the applicability of electrokinetic remediation method was evaluated. Also, BCR sequential extraction method was adopted to compare the heavy metal speciation in between before and after electrokinetic reaction that is operated under constant current condition for the sediment. After reaction, total Cr and Pb moved toward the direction of anode, while Cd tended to cathode and stayed highest in the midst of sediment specimen. From the BCR sequential extraction analysis, it was known that for total Cr and Pb the residual fraction that showed high fraction before reaction decreased and changed to the oxidation fraction. On the other hand, for Cd the fraction of exchangeable/carbonate that dominated most fractions before reaction changed to the residual and oxidation fractions.

Direct-Current Based Remedial Technologies for Contaminated Soils and Groundwaters

  • Lee, Suk-Young;Lee, Chae-Young;Yoon, Jun-Ki;Kim, Kil-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.3-6
    • /
    • 2002
  • Electron transfer is the major natural process governing the behavior of contaminants in soils and groundwaters. Biological degradation of contaminants, i.e., microbial transformation of hazardous compounds, is a well known irreversible electron transfer process. Although it is not well defined as a separate process, abiotic electron-transfer is also an important process for mobilizing/demobilizing inorganic contaminants in soils and groundwaters. Therefore, numerous remedial technologies have been developed on the basis of electron transfer concept. Among them,

  • PDF

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki;Fatima Zohra Hadjadj;Nadia Laredj;Hanifi Missoum
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2023
  • Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

A Field Study on Electrokinetic Removal of Salts from Greenhouse Soil (전기동력학 기술을 이용한 시설재배지 토양 염류제거 실증 연구)

  • Lee, You-Jin;Choi, Jeong-Hee;Sim, Seong-Ju;Ha, Tae-Hyun;Lee, Hyun-Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.126-132
    • /
    • 2014
  • A pilot-scale electrokinetic (EK) separation field test ($2{\times}3{\times}0.2m^3$, $W{\times}L{\times}D$) was performed in a greenhouse to remove salts from saline soil. Initially, the greenhouse soil had high electrical conductivity (EC), about 9 dS/m, and contained mainly $Ca^{2+}$, $Cl^-$ and $SO_4^{2-}$ ions. After 2 weeks of EK treatment, the soil EC was reduced to 52% compared with its initial value. The EC reduction was mostly achieved within the first week (47%) due to removal of $Na^+$ and $Cl^-$ ions, but ions with a high adsorption capacity such as $Ca^{2+}$ and $SO_4^{2-}$ ions were difficult to be removed. During the EK test, the soil temperature increased and it reached around $50^{\circ}C$ at some regions. For in situ application to soils in cultivation, the current should be controlled to limit increases in temperature, especially near the cathodes. In conclusion, the in situ EK technique is feasible for the restoration of saline greenhouse soils in or no cultivation and an appropriate strategy is necessary for more effective remediation.

Remediation of Arsenic Contaminated soils Using a Hybrid Technology Integrating Bioleaching and Electrokinetics (생용출과 전기동력학을 연계한 통합기술을 이용한 비소 오염 토양의 정화)

  • Lee, Keun-Young;Kimg, Kyoung-Woong;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.33-44
    • /
    • 2009
  • The objective of the study was to develop a hybrid technology integrating biological and physicochemical technologies to efficiently remediate arsenic contaminated lands such as abandoned mine area. The tailing soil samples contaminated with As at a high level were obtained from Songchon abandoned mine, and the content of arsenic and heavy metals as well as physicochemical properties and mineral composition were investigated. In addition, two sets of sequential extraction methods were applied to analyze chemical speciations of arsenic and heavy metals to expect their leachability and mobility in geoenvironment. Based on these geochemical data of arsenic and heavy metal contaminants, column-type experiments on the bioleaching of arsenic were undertaken. Subsequently, experiments on the hybrid process incorporating bioleaching and electrokinetics were accomplished and its removal efficiency of arsenic was compared with that of the individual electrokinetic process. With the results, finally, the feasibilty of the hybrid technnology was evaluated. The arsenic removal efficiencies of the individual electrokinetic process (44 days) and the hybrid process incorporating bioleaching (28 days) and electrokinetics (16 dyas) were measured 57.8% and 64.5%, respectively, when both two processes were operated in an identical condition. On the contrary, the arsenic removal efficiency during the bioleaching process (28 days) appeared relatively lower (11.8%), and the result indicates that the bioleaching process enhanced the efficacy of the electrokinetic process as a result of mobilization of arsenic rather than removed arsenic by itself. In particular, the arsenic removal rate of the electrokinetics integrated with bioleaching was observed over than 2 times larger than that obtained by the electrokinetics alone. From the results of the study, if the bioleaching which is considered a relatively economic process is applied sufficiently prior to electrokinetics, the removal efficiency and rate of arsenic can be significantly improved. Consequently, the study proves the feasibility of the hybrid process integrating both technologies.