• Title/Summary/Keyword: Electrokinetic Soil Remediation

Search Result 107, Processing Time 0.025 seconds

토양세척법과 동전기 정화 기술을 이용한 중금속 오염지반의 원위치 정화

  • 김병일;한상재;이군택;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.199-202
    • /
    • 2004
  • In this study the field-scale tests were performed in which in-situ E/K remediation technologies were applied, and then the results were present. For traditional E/K remediation method the efficiency of remediation is not large, but the enhanced method with citric acid significantly increases the removal efficiency. Also EDTA, reported as a good enhancement agent for removal of heavy metals, is similar to that of citric acid. Therefore citric acid is preferred rather than EDTA in view of the cost on the contaminant removal per unit concentration.

  • PDF

Applicability Evaluation of Electrodes Exchange and Mixed Solution for Enhanced Electrokinetic Process (Electrokinetic Process의 효율 향상을 위한 전극교환 방식과 혼합용매 적용 가능성 평가)

  • Lee, Noh-Sup;Park, Sung-Soo;NamKoong, Wan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.391-395
    • /
    • 2007
  • This study investigated the feasibility of enhanced electrokinetic (EK) remediation of soil contaminated with approximately 20000 Pb-mg/kg. Enhanced EK remediation was evaluated by using mixed solution (0.3 M acetic acid and 0.03 M EDTA, EK-M) and by exchanging electrodes for preventing precipitation of metal hydrate. For the EK-M, the lead removal efficiency was only 2% lower than the case where 0.03 M EDTA was solely used (EK-Blank, EK-B). Considering the costly expense of EDTA, the application of EK-M would be economically viable. The efficiency of of EK-E was higher by 2% than the EK-B method. More impertantly, the pH values of entire soil packed column presented to be neutral (7~8) in the EK-E process. Unlike to EK-B and EK-M, the deposition of heavy metals to any specific area was avoided in the EK-E process.

Characteristics of Electrokinetic Remediation of Unsaturated Soil I : Experimental Study (불포화토의 동전기 정화 특성 I : 실험적 연구)

  • Kim, Byung Il;Han, Sang Jae;Kim, Soo Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study is to experimentally analysis the eletrokinetic phenomena and remediation characteristics developed during the application of electrokinetic remediation technique to unsaturated soils contaminated by heavy metals. In the laboratory a series of column tests are performed on degree of saturation for shooting range soil. The test results indicated that Pb is mainly removed under unsaturated conditions by electromigration within diffuse double layer, and if the initial containment concentration is below cation exchange capacity and equals to adsorption per unit soil solid weight, the remedial efficiency decreases with the decreasing of transport efficiency due to the changes in the degree of saturation in the electric gradient of 1V/cm.

Electrorestoration of Strontium ion Contaminated Soils (동전기적방법에 의한 스트론튬 오염토양 제염)

  • 김계남;원휘준;박근일;박희성;오원진
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The electrokinetic apparatus for remediation of the soil contaminated with $Sr^{2+}$ was designed. After kaolin clay compulsorily contaminated by $Sr^{2+}$ solution, the remediation characteristics by electrokinetic method were analyzed. Meanwhile. the numerical code for analysis of electrokinetic migration was developed for modelling of the soil remediation. And the input parameters needed for modelling were measured by laboratory experiment or taken from literature. Experimental results are as follows: After 3 day remidiation under 40 voltage, the front part of experimental cell was almost decontaminated, but the behind part didnt almost be decontaminated. Consequently. the total remediation ratio of $Sr^{2+}$ from cell soil was about 42.6%. Also, the total $Sr^{2+}$remediation ratio from cell soil was about 84.8% after 6 days. The values calculated by the developed code almost agreed with experimental values When voltages of electrode were increased by 10, 30, 40V, the total $Sr^{2+}$ remediation ratlos were about 21.9%. 43.3%, 84.8%, respectively, after 6 days.

  • PDF

Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit (동전기법에 의한 광산퇴적토의 중금속 제거 특성)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

Electrokinetic Characteristic of Natural Soil with Flushing Agents (세척제에 따른 자연토의 동전기 특성)

  • 김익현;이정철;김병일;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.635-640
    • /
    • 2003
  • Electrokinetic characteristic of natural soil dependent on flushing agents is studied to determine the best agent used in the hybrid electrokinetic remediation system. The soil containing 7.6% Fe$_2$O$_3$is spiked with lead. The flushing agents to be inject into anode are HCl, Acetic acid, Citric acid, EDTA and SDS. Test results showed that the early electrical potential of EDTA is lower than the value of the others. And the pH in anode reservoir is higher. Elcetrokinetic characteristic of all the sample except for EDTA is about the same.

  • PDF

Electrokinetic Ions Injection into Kaolinite and Sand for Bioremediation (카올리나이트와 모레에서의 Bioremediation을 위한 Electrokinetic 이온 주입 특성)

  • 이호창;한상재;김수삼;오재일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.405-410
    • /
    • 2001
  • Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.

  • PDF

Electrokinetic Remediation of Soil Contaminated with Zn, Ni and F (동전기 정화기술을 이용한 Zn, Ni, F 복합오염 토양의 정화)

  • Cho, Jung-Min;Ryu, Byung-Gon;Park, Sung-Woo;Kim, Kyeong-Jo;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2009
  • The feasibility of electrokinetic remediation was investigated in the laboratory to treat contaminated soil with Zn, Ni and F. Electro-migration and electro-osmosis are the major removal mechanisms because fluorines desorbed from soil exist as an anionic form in soil pores, and Zn and Ni exist as a cationic form. Desorption of fluorine was enhanced under the alkaline condition, but that of Zn and Ni increased under the acidic condition. Sequential pH control was effective to control the mixed wastes from contaminated soil. 2 V/cm was applied to reactor to evaluate the effect of constant voltage gradient, after two weeks, the removal efficiency of Zn, Ni and F was 20.5%, 2.5% and 57.4%, respectively. Even though the removal of Zn and Ni was very low, the pH control enhanced transport of Zn and Ni significantly. As a result, sequential pH control is a effective method to remediate mixed waste-contaminated soil.