• Title/Summary/Keyword: Electrodialysis cell

Search Result 20, Processing Time 0.022 seconds

Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution (전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축)

  • Hwang, Gab-Jin;Kim, Jeong-Keun;Lee, Sang-Ho;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.338-344
    • /
    • 2007
  • Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined in the presence of iodine using a commercial cation exchange membrane, CMB, as a separator. For the increase of the selectivity of proton permeation, the membrane was radiation-treated by accelerated electron radiation. The membrane properties (area resistance, ion exchange capacity, water content) of the radiation-treated membranes were measured. The area resistance in 2 $mol/dm^3$ KCl solution, ion exchange capacity and water content of the radiation-treated membranes at each dose rate dad almost the same value as that of the non-treated membrane (original of CMB membrane). Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined at $75^{\circ}C$ with 9.6 $A/dm^2$. The radiation-treated cation exchange membrane by accelerated electron radiation had higher selectivity of the proton permeation by cross-linking structure of polymer than that of the non-treated membrane.

Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration (HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구)

  • Lee, Sang-Ho;Hong, Seong-Dae;Kim, Jeong-Keun;Hwang, Gab-Jin;Moon, Il-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater

  • Tanaka, Yoshinobu
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.13-37
    • /
    • 2010
  • The performance of an electrodialyzer for concentrating seawater is predicted by means of a computer simulation, which includes the following five steps; Step 1 mass transport; Step 2 current density distribution; Step 3 cell voltage; Step 4 NaCl concentration in a concentrated solution and energy consumption; Step 5 limiting current density. The program is developed on the basis of the following assumption; (1) Solution leakage and electric current leakage in an electrodialyzer are negligible. (2) Direct current electric resistance of a membrane includes the electric resistance of a boundary layer formed on the desalting surface of the membrane due to concentration polarization. (3) Frequency distribution of solution velocity ratio in desalting cells is equated by the normal distribution. (4) Current density i at x distant from the inlets of desalting cells is approximated by the quadratic equation. (5) Voltage difference between the electrodes at the entrance of desalting cells is equal to the value at the exits. (6) Limiting current density of an electrodialyzer is defined as average current density applied to an electrodialyzer when current density reaches the limit of an ion exchange membrane at the outlet of a desalting cell in which linear velocity and electrolyte concentration are the least. (7) Concentrated solutions are extracted from concentrating cells to the outside of the process. The validity of the computer simulation model is demonstrated by comparing the computed results with the performance of electrodialyzers operating in salt-manufacturing plants. The model makes it possible to discuss optimum specifications and operating conditions of a practical-scale electrodialyzer.

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

Recent Developments in Characterization of Ion-Exchange Membrane Processes: Impedance Spectroscopy for a Concentration Polarized Boundary Layer

  • Park, Jin-Soo;Moon, Seung-Hyeon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.1-11
    • /
    • 2004
  • Ion-exchange membranes have been widely used in various applications such as diffusion dialysis, electrolysis, electrodialysis, fuel cell etc [1-2]. When an electric current passes through the membrane system, the current is carried by both positive and negative ions in the bulk solution phases, whereas it is carried mainly by the counter-ions in the membrane. (omitted)

  • PDF

Recent Development Trends of Cation Exchange Membrane Materials (양이온교환막 소재 개발 동향)

  • 이충섭;신현수;전지현;정선영;임지원
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Currently, the commercialized cation exchange membranes have the excellent performance and stability, however their costs are very expensive and they are not still optimized for the several application areas. A number of membranenologists are focused to solve the problems on the development of novel membrane to be applicable to each membrane field. The present will deal with the introduction of the existing membrane materials and their performances.

Visualization of Ion Transport and pH Change in Ion Concentration Polarization (농도 분극 현상에서의 이온의 흐름과 pH 변화의 가시화)

  • Ko, Sung-Hee;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.38-42
    • /
    • 2010
  • Ion concentration polarization is an electrokinetic phenomenon which occurs in membrane systems, such as in an electrodialysis and fuel-cell system. But the phenomenon is not fully understood because hydrodynamics, electrokinetics and electrochemistry are coupled with each other. Here, we report that there occurs a change of pH value of buffer solution in concentration polarization phenomenon. To visualize the change of pH, the litmus solution which is one of the pH indicators was used. It is conjectured that the pH of solution changes because hydrogen ions were concentrated in cathodic side and hydroxide ions were concentrated in anodic side. We anticipate that this work may contribute to the fundamental understanding on the ion concentration polarization phenomenon.

A Study on Industrial Media for Production of Lactic acid in Batch and Continuous Fermentations (회분식 및 연속배양에 있어서 고농도 젖산의 생산을 위한 공업용 배지연구)

  • 김양훈;이기범;문승현
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.181-187
    • /
    • 1999
  • We have investigated industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity about 20% with an advantage of clearer fermentation broth. Yeast extract-complemented CSL improved the productivity about 20% with an advantage of clearer fermentation broth. Yeast extract-complemented CSL media further increased the increased the productivity. It was found that 3.1 g/L yeast extract and 5% CSL could be an effective substitute for 15 g/L yeast extract in 10% glucose medium. Brewing yeast was also used as a sole nitrogen source equivalent to 5% CSL. A continuous culture coupled with cell-recycle by microfiltration at the dilution rate of 0.05-0.065 h-1 led to the highest lactic acid productivity. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5-10 g/L of yeast extract performed reasonably in batch and continuous cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.

  • PDF

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

Analysis of Preconcentration Dynamics inside Dead-end Microchannel (막다른 미세유로 내부의 농축 동역학 분석)

  • Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.155-161
    • /
    • 2023
  • Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.