• 제목/요약/키워드: Electrode size

검색결과 803건 처리시간 0.024초

Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성 (Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method)

  • 이미재;최병현;김세기;지미정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF

음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성 (Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide)

  • 이은호;정광덕;주오심;최승철
    • 한국세라믹학회지
    • /
    • 제41권3호
    • /
    • pp.183-189
    • /
    • 2004
  • 음극전착법을 이용하여 전도성유리(ITO-glass)위에 Cu$_2$O 막을 제조하였다. Cu$_2$O 막의 특성을 향상시키기 위하여 전착방법, 시간, 전압, 전착 후 열처리 조건을 변화시켰다. 전착 후 열처리를 통해 얻어진 전극에 100mW/$ extrm{cm}^2$의 백색광을 조사하여 광전류밀도를 측정하고 XRD, SEM, UV-visible spectrophotometer를 통해 제조 조건변화에 따른 특성변화를 관찰하였다. 그리고 100mW/$\textrm{cm}^2$의 백색광하에서 bias 전압이 0V인 조건에서 전극의 안정성을 측정하였다 인가전압 -0.7V, 인가시간 300초 전착 조건에서 얻어진 막을 30$0^{\circ}C$에서 1시간 열처리하여 순수한 Cu$_2$O 막을 제조하였으며, 이 전극을 이용 광전류밀도를 측정한 결과 1048 $\mu$A/$\textrm{cm}^2$가 측정되었다. 또한 chemical deposition을 이용 TiO$_2$ 박막을 Cu$_2$O 막 위에 코팅하여 전극의 안정성을 향상시켰다.

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.

비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구 (A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer)

  • 하정호;정홍식
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.128-134
    • /
    • 2012
  • 전계 측정시스템에서 센서 감지부로 $1.3{\mu}m$ 파장대역에서 동작하는 비대칭 구조의 집적광학 Mach-Zehnder 광변조기를 구현하였다. BPM 전산모사를 통해서 소자의 동작 특성을 검증하였고, $LiNbO_3$에 Ti 확산방법으로 구현된 채널 광도파로에 평판형 안테나가 부착된 집중 전극구조 배열하여 전계 센서를 제작하였다. 500 KHz, 5 MHz 각각의 주파수에서 측정 가능한 최소 전계는 1.02 V/m, 6.91 V/m로 평가 되었으며, 이에 대응되는 각 주파수에서 ~35 dB, ~10 dB의 다이나믹 범위가 측정되었다.

$Bi_2O_3{\cdot}3TiO_2$의 첨가량에 따른 $(SrPb)(CaMg)TiO_3$ 세라믹의 전기적 특성 (The Electrical Properties of $(SrPb)(CaMg)TiO_3$ Ceramics with Contents of $Bi_2O_3{\cdot}3TiO_2$)

  • 김충혁
    • 한국전기전자재료학회논문지
    • /
    • 제11권2호
    • /
    • pp.111-120
    • /
    • 1998
  • In this paper, the $(SrPb)(CaMg)TiO_3$ ceramics with paraelectric properties were fabricated by the mixed oxide method. It was investigated that which the variation of contents of $Bi_2O_3{\cdot}3TiO_2$ effects on structural, dielectrical and electrical properties of specimens. As a result, the grain size were grown with increasing the contents of $Bi_2O_3{\cdot}3TiO_2$. The relative dielectric constants were increased up to 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$, and decreased more or less at a low temperature in the specimens which had more than. But the temperature coefficient. of capacitance were showed ${\pm}25$[%]. The dielectric loss were less than 0.05 in all specimens which had more than 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$. In order to investigate the behavior of charged particles, the characteristics of electrical conduction were measured. As a result, the conduction current was divided into the three steps as a function of DC electric field. The first step was Ohmic region due to ionic conduction, below 15[kV/cm]. The second step was showed a saturation which seems to be related to a depolarizing field occuring in field-enforced ferroelectric phase, between 15[kV/cm] and 40[kV/cm]. The third step was attributed to Child's law related to space charge which injected from electrode, above 40[kV/cm].

  • PDF

여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향 (Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors)

  • 조성동;백경욱
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

32'-diagonal Gated CNT Cathode

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Lee, Sang-Jin;Chi, Eung-Joon;Lee, Jin-Seok;Yun, Tae-Il;Lee, Byung-Gon;Han, Ho-Su;Ahn, Sang-Hyuck;Jung, Kyu-Won;Kim, Hun-Yeong;Yun, Bok-Chun;Park, Sung-Man;Choi, Jong-Sik;Oh, Tae-Sik;Kang, Sung-Kee;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.303-304
    • /
    • 2002
  • 32"-diagonal gated carbon nanotube(CNT) cathodes named under-gate cathodes for large-size display applications have been fabricated and characterized. The emission uniformity looks fine, even without the resistive layer. The emission performance has been improved by scaling down the cathode electrode dimension.

  • PDF

유리상 탄소입자의 직접 접촉충전에 의한 전기영동 현상연구 (Contact Charging and Electrphoresis of a Glassy Carbon Microsphere)

  • 최창용;임도진
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.568-573
    • /
    • 2016
  • 본 연구에서는 고체 입자인 유리상 탄소입자와 액체인 수용액적을 이용한 접촉충전 비교 실험을 수행하여 액적 접촉충전 현상에 적용했던 완전도체 이론 적용의 적합성 및 고체 도체의 접촉충전 특성을 살펴보았다. 동일한 실험 장치내에서 비슷한 크기의 수용액적과 유리상 탄소입자를 이용해 가해준 전기장의 세기와 입자의 크기를 변화시키며 충전량을 측정하고 완전도체 이론과의 비교를 통해 충전 특성을 분석하였다. 유리상 탄소입자의 접촉충전 현상은 기본적으로 완전 도체 이론으로 설명이 가능하였으나 실제 충전되는 충전량은 이론치 대비 70~80% 수준으로 측정되었으며 이는 고체 입자가 전극과 접촉하여 전하가 전달되는 과정 중 전극과 오일 사이 오일 필름의 형성으로 주어진 짧은 시간 내에 충분한 전하의 전달이 이루어지지 못해 나타난 것으로 추정된다. 본 연구 결과는 고체 도체의 접촉충전 특성에 대한 이해를 높여 향후 이 분야에 중요한 기초 정보를 제공할 수 있을 것으로 기대된다.

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • 이승준;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성 (Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes)

  • 김종휘;안계혁;신경희;류민웅;김동국
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.814-821
    • /
    • 1999
  • 고비표면적의 활성탄소섬유(ACF: activated carbon fiber)를 분극성 전극으로 이용한 전기이중층 캐패시터(electric double layer capacitor)의 단위 cell test를 통하여, ACF의 비표면적, 세공의 크기 및 전기전도도가 캐패시터의 비축전용량에 커다란 영향을 미치고 있음을 확인할 수 있었고, 전해질은 $H^+$ 이온을 함유한 $H_2SO_4$이 가장 좋은 축전용량을 나타내었으나, 집전체 부식 등의 문제로 인하여, 실용화에 있어서는 우수한 충방전 거동을 나타낸 KOH계 전해질이 적당한 것으로 확인되었다. 분극성 전극으로 사용되는 ACF를 탄화 또는 후활성화 등이 후처리를 통하여 비축전용량을 급격히 증가시킬수 있었고, 3만회까지의 연속 충방전 실험에서 전기이중층 캐패시터는 2차전지에서는 찾아 볼 수 없는 매우 높은 충방전 효율과 긴 사용수명을 가지는 것을 확인할 수 있었다.

  • PDF