DOI QR코드

DOI QR Code

Contact Charging and Electrphoresis of a Glassy Carbon Microsphere

유리상 탄소입자의 직접 접촉충전에 의한 전기영동 현상연구

  • Choi, Chang Yong (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • 최창용 (국립부경대학교 화학공학과) ;
  • 임도진 (국립부경대학교 화학공학과)
  • Received : 2016.02.01
  • Accepted : 2016.04.27
  • Published : 2016.08.01

Abstract

We investigated the charging characteristics of a conducting solid sphere (glassy carbon sphere) comparing with that of a water droplet and check the applicability of the perfect conductor theory. For the systematic research, sphere size, applied voltages, viscosity of the medium were changed and the results were compared with that of corresponding water droplets and the perfect conductor theory. Basically, a glassy carbon sphere follows the perfect conductor theory but the charging amount was lower as much as 70~80% of theoretical prediction value due to oil film formed between electrode and a carbon sphere. We hope this result provides basic understandings on the solid sphere contact charging phenomenon and related applications.

본 연구에서는 고체 입자인 유리상 탄소입자와 액체인 수용액적을 이용한 접촉충전 비교 실험을 수행하여 액적 접촉충전 현상에 적용했던 완전도체 이론 적용의 적합성 및 고체 도체의 접촉충전 특성을 살펴보았다. 동일한 실험 장치내에서 비슷한 크기의 수용액적과 유리상 탄소입자를 이용해 가해준 전기장의 세기와 입자의 크기를 변화시키며 충전량을 측정하고 완전도체 이론과의 비교를 통해 충전 특성을 분석하였다. 유리상 탄소입자의 접촉충전 현상은 기본적으로 완전 도체 이론으로 설명이 가능하였으나 실제 충전되는 충전량은 이론치 대비 70~80% 수준으로 측정되었으며 이는 고체 입자가 전극과 접촉하여 전하가 전달되는 과정 중 전극과 오일 사이 오일 필름의 형성으로 주어진 짧은 시간 내에 충분한 전하의 전달이 이루어지지 못해 나타난 것으로 추정된다. 본 연구 결과는 고체 도체의 접촉충전 특성에 대한 이해를 높여 향후 이 분야에 중요한 기초 정보를 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. Eow, J. S. and Ghadiri, M., "Motion, Deformation and Break-up of Aqueous Drops in Oils Under High Electric Field Strengths," Chem. Eng. Process., 42, 259-272(2003). https://doi.org/10.1016/S0255-2701(02)00036-3
  2. Hase, M., Watanabe, S. N. and Yoshikawa, K., "Rhythmic Motion of a Droplet Under a Dc Electric Field," Phys. Rev. E., 74, 046301(2006). https://doi.org/10.1103/PhysRevE.74.046301
  3. Kim, J. G., Im, D. J., Jung, Y. M. and Kang, I. S., "Deformation and Motion of a Charged Conducting Drop in a Dielectric Liquid Under a Nonuniform Electric Field," J. Colloid. Interf. Sci., 310, 599-606(2007). https://doi.org/10.1016/j.jcis.2007.02.007
  4. Ristenpart, W. D., Bird, J. C., Belmonte, A., Dollar, F. and Stone, H. A., "Non-coalescence of Oppositely Charged Drops," Nature 461, 377-380(2009). https://doi.org/10.1038/nature08294
  5. Im, D. J., Noh, J., Yi, N. W., Park, J. and Kang, I. S., "Influences of Electric Field on Living Cells in a Charged Water-in-oil Droplet Under Electrophoretic Actuation," Biomicrofluidics 5, 044112(2011). https://doi.org/10.1063/1.3665222
  6. Ahn, B., Lee, K., Panchapakesan, R. and Oh, K. W., "On-demand Electrostatic Droplet Charging and Sorting," Biomicrofluidics 5, 024113(2011). https://doi.org/10.1063/1.3604393
  7. Kurimura, T., Ichikawa, M., Takinoue, M. and Yoshikawa, K., "Back-and-forth Micromotion of Aqueous Droplets in a Dc Electric Field," Phys. Rev. E., 88, 042918(2013). https://doi.org/10.1103/PhysRevE.88.042918
  8. Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Charged Droplets," Anal Chem 85, 4038-4044(2013). https://doi.org/10.1021/ac303778j
  9. Schoeler, A. M., Josephides, D. N., Sajjadi, S., Lorenz, C. D. and Mesquida, P., "Charge of Water Droplets in Non-polar Oils," J. Appl. Phys., 114, 144903(2013). https://doi.org/10.1063/1.4824180
  10. Zhang, Y. Z., Liu, Y. H., Wang, X. L., Shen, Y., Ji, R. J. and Cai, B. P., "Investigation of the Charging Characteristics of Micrometer Sized Droplets Based on Parallel Plate Capacitor Model," Langmuir 29, 1676-1682(2013). https://doi.org/10.1021/la3046737
  11. Schoeler, A. M., Josephides, D. N., Chaurasia, A. S., Sajjadi, S. and Mesquida, P., "Electrophoretic Manipulation of Multiple-emulsion Droplets," Appl. Phys. Lett., 104, 074104(2014). https://doi.org/10.1063/1.4866039
  12. Drews, A. M., Cartier, C. A. and Bishop, K. J. M., "Contact Charge Electrophoresis: Experiment and Theory," Langmuir 31, 3808-3814(2015). https://doi.org/10.1021/acs.langmuir.5b00342
  13. Mukhopadhyay, R., "Diving Into Droplets," Anal. Chem., 78, 1401-1404(2006). https://doi.org/10.1021/ac069373u
  14. Abdelgawad, M. and Wheeler, A. R., "The Digital Revolution: A New Paradigm for Microfluidics," Adv. Mater., 21, 920-925(2009). https://doi.org/10.1002/adma.200802244
  15. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48, 545-555(2010).
  16. Nam, J. O., Choi, C. H., Kim, J., Kang, S. M. and Lee, C. S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51, 597-601(2013). https://doi.org/10.9713/kcer.2013.51.5.597
  17. Im, D. J., "Next Generation Digital Microfluidic Technology: Electrophoresis of Charged Droplets," Korean J. Chem. Eng., 32, 1001-1008(2015). https://doi.org/10.1007/s11814-015-0092-0
  18. Im, D. J., Jeong, S., Yoo, B. S., Kim, B., Kim, D. P., Jeong, W. J. and Kang, I. S., "Digital Microfluidic Approach for Efficient Electroporation: Gene Transformation of Microalgae Without Cell Wall Removal," Anal. Chem., 87, 6592-6599(2015). https://doi.org/10.1021/acs.analchem.5b00725
  19. Ochs, H. T. and Czys, R. R., "Charge Effects on the Coalescence of Water Drops in Free Fall," Nature 327, 606-608(1987). https://doi.org/10.1038/327606a0
  20. Lee, D. W., Im, D. J. and Kang, I. S., "Measurement of the Interfacial Tension in An Ionic Liquid-dielectric Liquid System Using an Electrically Deformed Droplet," J. Phys. Chem. C., 117, 3426-3430(2013). https://doi.org/10.1021/jp312212e
  21. Ahn, M. M., Im, D. J., Kim, J. G., Lee, D. W. and Kang, I. S., "Extraction of Cations from an Ionic Liquid Droplet in a Dielectric Liquid Under Electric Field," J. Phys. Chem. Lett., 5, 3021-3025(2014). https://doi.org/10.1021/jz501511z
  22. Eow, J. S., Ghadiri, M., Sharif, A. O. and Williams, T. J., "Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Current Understanding," Chem. Eng. J., 84, 173-192(2001). https://doi.org/10.1016/S1385-8947(00)00386-7
  23. Eow, J. S. and Ghadiri, M., "Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Technology," Chem. Eng. J., 85, 357-368(2002). https://doi.org/10.1016/S1385-8947(01)00250-9
  24. Park, J. U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., Lee, C. Y., Strano, M. S., Alleyne, A. G., Georgiadis, J. G., Ferreira, P. M. and Rogers, J. A., "High-resolution Electrohydrodynamic Jet Printing," Nat. Mater., 6, 782-789(2007). https://doi.org/10.1038/nmat1974
  25. Yudistira, H. T., Nguyen, V. D., Tran, S. B. Q., Kang, T. S., Park, J. K. and Byun, D., "Retreat Behavior of a Charged Droplet for Electrohydrodynamic Inkjet Printing," Appl Phys Lett 98, 083501(2011). https://doi.org/10.1063/1.3555346
  26. Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Droplet in a Dielectric Liquid for Droplet Actuation," Anal. Chem., 83, 5168-5174(2011). https://doi.org/10.1021/ac200248x
  27. Im, D. J., Ahn, M. M., Yoo, B. S., Moon, D., Lee, D. W. and Kang, I. S., "Discrete Electrostatic Charge Transfer by the Electrophoresis of a Charged Droplet in a Dielectric Liquid," Langmuir 28, 11656-11661(2012). https://doi.org/10.1021/la3014392
  28. Ahn, M. M., Im, D. J. and Kang, I. S., "Geometric Characterization of Optimal Electrode Designs for Improved Droplet Charging and Actuation," Analyst 138, 7362-7368(2013). https://doi.org/10.1039/c3an01623d
  29. Hamlin, B. S. and Ristenpart, W. D., "Transient Reduction of the Drag Coefficient of Charged Droplets via the Convective Reversal of Stagnant Caps," Phys. Fluids., 24, 012101-012112(2012). https://doi.org/10.1063/1.3674301
  30. Drews, A. M., Lee, H.-Y. and Bishop, K. J. M., "Ratcheted Electrophoresis for Rapid Particle Transport," Lab. Chip., 13, 4295-4298(2013). https://doi.org/10.1039/c3lc50849h

Cited by

  1. Electrostatic Origins of the Positive and Negative Charging Difference in the Contact Charge Electrophoresis of a Water Droplet vol.33, pp.48, 2016, https://doi.org/10.1021/acs.langmuir.7b03281
  2. 전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가 vol.57, pp.6, 2016, https://doi.org/10.9713/kcer.2019.57.6.898
  3. Wall Effects on Hydrodynamic Drag and the Corresponding Accuracy of Charge Measurement in Droplet Contact Charge Electrophoresis vol.36, pp.17, 2016, https://doi.org/10.1021/acs.langmuir.0c00052
  4. Effect of Deformation on Droplet Contact Charge Electrophoresis vol.36, pp.35, 2016, https://doi.org/10.1021/acs.langmuir.0c01465
  5. Coalescence of Two Oppositely Charged Droplets at Constant Electric Potential vol.59, pp.2, 2016, https://doi.org/10.9713/kcer.2021.59.2.247