• Title/Summary/Keyword: Electrode size

Search Result 805, Processing Time 0.029 seconds

Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode (아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Non-linear Resistive Switching Characteristic of ZnSe Selector Based HfO2 ReRAM Device for Eliminating Sneak Current

  • Kim, Jong-Gi;Kim, Yeong-Jae;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.357-358
    • /
    • 2013
  • The non-linear characteristics of ON states are important for the application to the high density cross-point memory industry because the sneak current in neighbor cells occurred during reading, erasing, and writing process. Kw of above 20 in ON states, which is the writing current @ Vwrite/the current @ 1/2Vwrite, was required in cross-point ReRAM memory industry. The high current density non-linear IV curve of ZnSe selector was shown and the ALD HfO2 switching device has the linear properties of ON states and the compliance current of 100 uA. To evaluate the performance of the selection device, we connected itto HfO2 switching device in series. The bottom electrode of the selection device was connected to the top electrode of the RRAM. All of the bias was applied with respect to the top electrode of the selection device, whereas the bottom electrode of the RRAM was grounded. In the cross-point application, 1/2Vwrite and -1/2Vwrite were applied to the word-line and bit-line, respectively, which were connected to the selected cell, and a zero bias was applied to the unselected word-lines and bit-lines. The current @ 1/2Vwrite of the unselected cells was blocked by the selection device, thus eliminating the sneak path and obtaining a writing voltage margin. Using this method, the writing voltage margin was analyzed on the basis of the memory size.

  • PDF

A Study of Particle-Initiated Breakdown Characteristics on a Spacer Surface for $SF_6$ GIS ($SF_6$ GIS용 스페이서 표면에서의 파티클에 의한 절연파괴 특성연구)

  • Kim, Jae-Ho;Lee, Yong-Gil;Kim, Dong-Eui;Lee, Sae-Hun;Kim, Jung-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1536-1539
    • /
    • 1994
  • The influence due to metallic particle contaminated on spacer surface is remarkable in the decreasing of dielectric strength in $SF_6$ GIS. In relation with this problem, We studied, AC flash-over voltage characteristics and breakdown mechanism are investigated under metallic particle initiated condition in $SF_6$ gas by varying the particle position, particle shape with a plane-plane electrode. The main results arc as follows 1. The small amount of the metallic particle in the gap do not make flash-over voltage to be influence, but the significant decrease of th flash-overed voltage is result in case of the big and long size of the metallic paraticle. 2. Influence of the flash-over voltage are lowest in the mid and are highest in the electrode of metallic particle position. 3. In case of the initiated metallie particle, The more the pressure are high, the more the recluced ratio of flash-over voltage are high. 4. The metallic particle shape which results in the reduced flash-over voltage forced the critical pressure to move in to the region of low pressure. 5. The existance of the metallic particle on the upper electrode side and high pressure make the decreasing ratio of flash-over voltage bigger than that of the ground side electrode.

  • PDF

Characteristics and Preparation of Manganese Oxide Electrode by Using Pulse Voltammetry Electrodeposition for Electrolysis (펄스 전착법을 이용한 전기분해용 망간 산화물 전극의 제조 및 특성)

  • Yang, Jeong-Jin;Lee, Mi-Young;Kim, Jeong-Sik;Shin, Hyun-Soo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • In order to investigate the electrochemical propertied of titanium electrode for electrolysis, manganese oxide was electrodeposited on surface of mesh titanium by pulse voltammetry. The morphological changes and impedance results of manganese oxide electrodeposited electrode were analyzed by SEM and EDX. The size of electrodeposited manganese oxide on mesh titanium was increased with first cycle pulse time increase, and approximately 100 non-uniform manganese oxide was grown at 10 ms pulse polarization time. Charge transfer resistance($R_{ct}$) of near the overpotential was analyzed by EIS measurement and the feasibility of prepared electrode was evaluated by the overpotential calculated from Tafel plots.

Frequency-Dependant Grounding Impedances According to the Length of Grounding Electrode and the Joint Position of Ground Conductors (접지전극의 길이 및 접지도선의 접속위치에 따른 접지임피던스의 주파수의존성)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.37-43
    • /
    • 2010
  • When lightning surges with wide frequency spectrum and power converting devices are considered, it is desirable to evaluate grounding system performance by grounding impedances. This paper presents the measured results for frequency-dependent grounding impedance for the vertical grounding electrode and counterpoise on a scale of full size. Grounding impedances of vertical grounding electrodes and counterpoises give capacitive or inductive behaviors according to the length of grounding electrodes and soil resistivity. It is inefficient to extend the length of the grounding electrode in order to decrease the ground resistance, and when designing the grounding system, the consideration of the grounding impedance should be desirable. In order to reduce the grounding impedance of counterpoise, the grounding conductors are jointed at the center of counterpoises. It is effective to reduce the grounding impedance by connecting ground rods to counterpoises in parallel.

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Study on Oxygen Evolution Reaction of Ni-Zn-Fe Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Zn-Fe 전극의 산소 발생 반응 특성)

  • LEE, TAEKYUNG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;KANG, KYOUNGSOO;KIM, YOUNGHO;JEONG, SEONGUK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.549-558
    • /
    • 2018
  • The overall efficiency depend on the overpotential of the oxygen evolution reaction in alkaline water electrolysis. Therefore, it is necessary to research to reduce the oxygen evolution overpotential of electrodes. In this study, Ni-Zn-Fe electrodes were prepared by electroplating and the surface area was increased by Zn leaching process. Electroplating variables were studied to optimize the plating parameters(electroplating current density, pH value of electroplating solution, Ni/Fe content ratio). Ni-Zn-Fe electrode, which is electroplated in a modified Watts bath, showed 0.294 V of overpotential at $0.1A/cm^2$. That result is better than that of Ni and Ni-Zn plated electrodes. As the electroplating current density of the Ni-Zn-Fe electrode increased, the particle size tended to increase and the overpotential of oxygen evolution reaction decreased. As reducing pH of electroplating solution from 4 to 2, Fe content in electrode and activity of oxygen evolution reaction decreased.

Development of Variable Vacuum Capacitor with Maximum Voltage of 12 kV and Capacitance of 50 to 500 pF (최대 전압 12 kV, 커패시턴스 50~500 pF 가변 진공커패시터 개발)

  • Cha, Youngkwang;Lee, Ilhoi;Jeon, Kibeom;Jang, Jihoon;Ju, Heungjin;Choi, aSeungkil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.232-240
    • /
    • 2022
  • A variable vacuum capacitor (VVC), which is a variable element, is used to match impedance in plasma that changes with various impedance values, and its use is expanding with the rapid growth of the semiconductor business. Since VVCs have to secure insulation performance and vary capacitance within a compact size, electrode design and manufacturing are very important; thus, various technologies such as part design and manufacturing technology and vacuum brazing technology are required. In this study, based on the model of an advanced foreign company that is widely used for impedance matching in the manufacture of semiconductors and displays, a VVC that can realize the same performance was developed. The electrode part was designed, the consistency was confirmed through analysis, and the precision of capacitance was improved by designing a cup-type electrode to secure the concentricity of the electrode. As a result of the evaluation, all requirements was satisfied. We believe that self-development will be possible if satisfactory responses are received through evaluation by VVC consumers in the future.

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

Surface Modification of a Screen-printed Carbon Electrode with Iridium Oxide and Its Application of an Impedance Sensor (스크린 프린팅 탄소 전극의 이리듐 산화물 표면 개질과 이의 임피던스 센서 응용)

  • Min Sik Kil;Jo Hee Yoon;Jinwu Jang;Bong Gill Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.493-500
    • /
    • 2023
  • In this study, we developed an impedance sensor capable of controlling electrode polarization by coating iridium oxide (IrOx) on the surface of the screen-printed carbon electrode. IrOx was deposited on the surface of carbon electrodes according to the number of cycles (0~50 cycles) by cyclic voltammetry. Observation of scanning electron microscope images revealed that the size and number of IrOx particles increased as the number of cycles increased. The changes in impedance responses as a function of the NaCl concentration of the as-obtained sensors were investigated using electrochemical impedance spectroscopy. The sensors manufactured in 50 cycles exhibited the best coefficient of determination and reproducibility, attributed to the well-controlled electrode polarization. We further demonstrated the usefulness of the IrOx-based sensor as a diagnosis sensor for dry eye syndrome by comparing the results of the commercially available osmometer and our sensor using actual solution samples.