• Title/Summary/Keyword: Electrode size

Search Result 804, Processing Time 0.034 seconds

Estimation of nugget size in resistance spot welding using a neural network (저항 점 용접에서 신경회로망을 이용한 용융부의 크기 예측에 관한 연구)

  • 임태균;조형석;장희석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.362-366
    • /
    • 1990
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitative analyses of sampled process variables have been successfully attempted to achieve a uniform nugget size. In this paper, the electrode movement signal which is a good indicative of the nugget size was examined by introducing a mathematical model with four parameters. A neural network method was applied for the estimation of the nugget size by four parameters. The prediction by the neural network is in good agreement with the actual nugget size. The results are quite promising in that the qualitative estimation of the invisible nugget size can be achieved without destructive testing of the welds.

  • PDF

Estimation of Nugget Size in Resistance Spot Welding for Galvanized Steel Using an Artificial Neural Networks (아연도금강판의 저항 점용섭에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 박종우;이정우;최용범;장희석
    • Proceedings of the KWS Conference
    • /
    • 1992.10a
    • /
    • pp.91-95
    • /
    • 1992
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitive analyses of sampled process variables have been attempted to predict nugget size. In this paper, dynamic resistance and electrode movement signal which is a good indicative of the nugget size was examined by introducing an artificial neural network estimator. An artificial neural feedforward network with back-propagation of error was applied for the estimation of the nugget size. The prediction by the neural network is in good agreement with the actual nugget size for resistance spot welding of galvanized steel. The results are quite promising in that the quantitative estimation of the invisible nugget size can be achieved without conventional destructive testing of welds.

  • PDF

A Study on the Electrochemical Micromachining with Various Pulse Currents (전원특성에 따른 마이크로 전해가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.942-945
    • /
    • 2001
  • Pulse electrochemical micromachining offers significant improvements in dimensional accuracy as compared with conventional electrochemical machining. One primary issue in pulse electrochemical micromachining is to identify and control machining depth as well as interelectrode gap size. This paper presents an identification method for the machining depth by in-process analysis of machining current and interelectrode gap size. The inter electrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed based on the model and experiments.

  • PDF

Full Size PDP Development with SDR Structure for Improved Luminance and Low Power Consumption

  • Yoo, Min-Sun;Yoon, Cha-Keun;Lee, Kwang-Sik;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.53-56
    • /
    • 2002
  • Samsung's newly developed high luminance efficiency 42" VGA plasma display panel is introduced. A new discharge cell structure, SDR (Segmented electrode in Delta color arrayed Rectangular subpixel) has been applied to a full size panel for the first time. In this paper, we describe how this new discharge cell structure for high efficiency is integrated to an energy saving plasma display with better picture quality.

  • PDF

Manufacture of SiC matrix for PAFC (인산형 연료전지용 SiC MATRIX 제조)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.187-193
    • /
    • 1993
  • Porous matrices to contain and support phosphoric acid were prepared with PTFE as binder and SiC whisker or SiC powders of various particle size for phosphoric acid fuel cell(PAFC). Among the matrix characteristics the most important factors in stack performances were thought to be the bubble pressure and electrolyte wettability And then matrix was constructed to have pore size smaller than that of electrode. The bubble pressures and wettabilities of matrices manufactured with various size of SiC and different PTFE contents were investigated and related with the porosities measured by porosimeter, and then the optimum manufacturing condition of matrix for PAFC was determined.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell (알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석)

  • Yuk, Eunsung;Lee, Hyejin;Jung, Namgee;Shin, Dongwon;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

Performance characteristics of AGM lead acid battery with the content of positive plate incorporating nano-size additive material (나노 사이즈 입자가 포함된 양극 활물질 함량에 따른 차량용 AGM 연축전지 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, Seung Cheol;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.123-130
    • /
    • 2020
  • Nano seed incorporated in micro-sized 4BS (Tetrabasic lead Sulfate) seed was applied to the positive electrode active material and compared with Nano 4BS seed (NS). The dispersion of NS decreased due to the aggregation phenomenon, while the nano seed incorporated in micro-sized 4BS seed (INS) could confirm excellent dispersion. As the content of INS increased, the particle size of the active material became small and constant, which was confirmed through SEM and particle size analysis. The specific surface area for the reaction was increased and the high-rate discharge and lifetime characteristics were improved. In order to confirm the variation in particle size distribution in the plate manufacturing process, internal resistance and voltage were measured for 200 AGM lead-acid batteries, and it was confirmed that batteries quality variation decreased.

Effects of Glass Frit Size on the Sintering Behavior of Cu Termination Paste in MLCC (Glass Frit의 입도가 MLCC 외부전극 Paste의 소결거동에 미치는 영향)

  • Lee, Kyu-Ha;Jeon, Byung-Jun;Kim, Chang-Hoon;Kwon, Young-Geun;Park, Myung-Jun;Gu, Hyun-Hee;Uhm, Ji-Won;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • Multilayer ceramic capacitors (MLCCs) have continually been made smaller in size and larger in capacity in resent years. However, the end termination electrode is still thick in many MLCCs. In this study, we used small grain glass frit to embody thin film and highly densification in the end termination by improve sintering driving force with well-dispersion and rising surface energy. Pastes were fabricated using size changed glass frit, such as 0.1 ${\mu}m$, 0.5 ${\mu}m$, 1.0 ${\mu}m$, 4.0 ${\mu}m$. Fabricated pastes were applied 05A475KQ5 chip and fired various sintering temperatures to analyze sintering behavior of pastes. Consequently, small glass frit used pastes have many merits than larger, such as well-dispersion, improve cornercoverage and surface roughness, possibility of low temperature sintering. However, we confirmed that small glass frit used pastes have narrow sintering window by rapid completion of sintering densification.

Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope (원자간인력현미경을 이용한 분자수준의 중금속 이온 검출)

  • Kim, Younghun;Kang, Sung Koo;Choi, Inhee;Lee, Jeongjin;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • A metal ion detector with a submicron size electrode was fabricated by field-induced AFM oxidation. The square frame of the mesa pattern was functionalized by APTES for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of MPTMS for Au metal deposition. The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes. The smaller electrode has a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. This two-electrode system immobilized with different functional groups was successfully used in the selective adsorption and detection of target materials.

  • PDF