• Title/Summary/Keyword: Electrode form

Search Result 373, Processing Time 0.028 seconds

전력설비용 Polyethlene의 열자극 표면전위법에 의한 공간저하 측정에 관한 연구

  • 이경섭;국상훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1990년도 추계학술발표회논문집
    • /
    • pp.63-67
    • /
    • 1990
  • Many characteristics of space charge in insulating materials which is the cause of insulation break down was measured quantita-tively. It was confirmed that injection charge of the electrode was trapped to form mainly space charge. In the present paper, collecting potential was determined by TSSP and mean depths of space distribution was investigated by measuring variation quantity of space charge under the different bias time, voltage and temperature. Experimental resuts was in good agreement with model analysis on a stedy state.

  • PDF

Novel Method to Form Metal Electrodes by Self-Alignment and Self-Registration Processes

  • Shin, Dong-Youn
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1197-1199
    • /
    • 2009
  • Self-alignment for the fabrication of printed thin film transistors has become of great interest because of the resolution and registration limits of printing technologies. In this work, self-patterning and selfregistration processes are introduced, which do not need surface energy patterning and the resulting minimum gate channel length could be down to $11.2{\mu}m$ with the sheet resistance of 2.6 ${\Omega}/{\square]$ for the source and drain electrodes.

  • PDF

Electrocatalytic Reduction of Dioxygen by Cobaltporphyrin in Aqueous Solutions

  • 전승원;이효경;김송미
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.825-830
    • /
    • 1998
  • The electrocatalytic reduction of dioxygen by Co(TTFP)(Y)2 {Y=H2O or HO-} is investigated by cyclic voltammetry, spectroelectrochemistry, hydrodynamic voltammetry at a glassy carbon electrode in dioxygen-saturated aqueous solutions. Electrocatalytic reduction of dioxygen by CoⅡ(TTFP)(Y)2 establishes a pathway of 2e- reduction to form hydrogen peroxide, and then the generated hydrogen peroxide is reduced to water by CoⅠ(TTFP)(Y)2 at more negative potential. CoⅡ(TTFP)(Y)2 may bind dioxygen to produce the adduct complex [CoⅡ-O2 or CoⅢ-O2] which exhibits a Soret band at 411 nm and Q band at 531 nm.

A New Porous Carbon via an Exfoliation of n-Octylammonium Tetrachloroferrate(III)-Graphite Intercalation Complex

  • 권채원;김동훈;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1113-1116
    • /
    • 1998
  • A new graphite intercalation compound (GIC), n-octylammonium tetrachlorofeffate(Ⅲ)-graphite, has been derived from well-known ferric chloride graphite intercalation compound. X-ray diffration study shows that the basal spacing of this new GIC is 20.8 Å. In order to investigate the local geometry around the iron atom in the graphite layers, X-ray absorption spectroscopy experiments were performed. The first discharge capacity of its exfoliated form is found to be 862 mAh/g, which is more than double the value of pristine graphite (384 mAh/g). Such a drastic increase implies that the exfoliated graphite is a promising electrode material.

와이어방전가공시 북량현상 예측에 관한 연구 (A Study on the Hand Drum Form Predict in the Wire Electric Discharge)

  • 김선진;성백섭
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.70-78
    • /
    • 2003
  • The purpose of this study was to present the method to choose the optimization machining condition for the wire electric discharge machine. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. In this experiment, we changed no-node voltage to 7 and 9, pulse-on-time to 6$mutextrm{s}$, 8$mutextrm{s}$ and 10$mutextrm{s}$, pulse-off-time to 8$mutextrm{s}$, 10$mutextrm{s}$ and 13$mutextrm{s}$, and experimented on wire tension at room temperature by 1000gf, 1200gf, and 1400gf, respectively.

GIS에 있어서 전기적 절연진단법에 대한 연구[1] (A Study on the Electrical Diagnostic Methods In GIS)

  • 최재구;김영배;김익수;이형호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.904-906
    • /
    • 1998
  • PD pulses have about one nanosecond rise time in the $SF_6$ gas insulation. These pulses propagate in the apparatus to PD sensors in the form of the voltage oscillation, high frequency current and the electromagnetic radiation. In this paper, we investigated the characteristics of two types of PD sensors, by putting high frequency signals in the form of sine waves and pulse into the test apparatus in air. Also, we measured PD quantity from the needle electrode and the sensitivity of the sensors. We found that PD of 70pC could be detected with this method and the study in $SF_6$ gas should be carried out for application to $SF_6$ GIS.

  • PDF

능동형 임플란터블 디바이스 기술동향: BCI 응용 중심 (Active Implantable Device Technology Trend: BCI Application Focus)

  • 이성규;변춘원;김이경;박형일
    • 전자통신동향분석
    • /
    • 제32권6호
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용 (Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge)

  • 최유리;김동주;김교선
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구 (Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology)

  • 김건웅;정재범;박진호;정우진;김준영
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.24-29
    • /
    • 2024
  • Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

초발수 현상을 이용한 나노 잉크 미세배선 제조 (Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect)

  • 손수정;조영상;나종주;최철진
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.