• Title/Summary/Keyword: Electrode attachment

Search Result 43, Processing Time 0.032 seconds

Study of Practical Method for International 10~20 Electrode System (국제적인 10~20 전극시스템의 실용적인 방법에 관한 연구)

  • Kim, Sung-Hee;Lee, Ok-Kyoung;Kim, Dae Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • Electroencephalography (EEG) is used for the diagnosis of epilepsy and testing the brain function. Clinical technologists are responsible for recording EEG without artifacts in accordance with the international 10~20 electrode system. Training on these techniques requires practical education. In the case of EEG, however, it is difficult for trainees to find the correct location of the electrode. Therefore, this study compared the time spent to locate the electrode attachment between traditional tape and the newly developed band. The time spent for sitting position patients using the band (196.7±61.8s) was 1084.3 s faster than the tape (1,281.0±457.4s) (P<0.001). Furthermore, the spend time spent for lying position patients using the band (200.2±49.3s) was 1217.7s faster than the tape (1417.9±482.3s) (P<0.001). Measurements using the band showed fewer differences due to various factors, such as position, practical experience, and gender. The newly developed band can locate the correct electrode attachment position quickly and efficiently, which has been a difficult problem in EEG practical education. In addition, this band is expected to be applied widely by new clinical technologists in the clinical field. Nevertheless, more study will be required to verify the accuracy of the location of the attaching electrode.

Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell

  • Eaktasang, Numfon;Kang, Christina S.;Ryu, Song Jung;Suma, Yanasinee;Kim, Han S.
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.277-281
    • /
    • 2013
  • A dual-chamber microbial fuel cell (MFC) inoculated with Desulfovibrio desulfuricans and supplemented with lactate as an organic fuel was employed in this study. Biofilm formed on the anodic electrode was examined by scanning electron microscopy, revealing that the amount of biofilm was increased with repeated cycles of MFC operation. The maximum current production was notably increased from the first cycle ($1,310.0{\pm}22.3mA/m^2$) to the final cycle ($1,539.4{\pm}25.8mA/m^2$) of MFC run. Coulombic efficiency was also increased from $89.4%{\pm}0.2%$ to $98.9%{\pm}0.5%$. We suggest that the current production efficiency was related to the biomass of biofilm formed on the electrode, which was also increased as the MFC run was repeated. It was also found that D. desulfuricans, which colonized on the electrode, produced filaments or nano-pili. Nano-pili were effective for the attachment of cells on the electrode. In addition, the nano-pili provided a cell-to-cell link and stimulated the development of thicker electroactive biofilm, and therefore, they facilitated electron transfer to the anode. Conclusively, the biofilm of D. desulfuricans enhanced the current production in the MFC as a result of effective attachment of cells and electron transfer from the cell network to the electrode.

Preliminary Study on Dust Removal by Electrode-Plate Coated with Activated Carbon (활성탄전극의 분진제거에 대한 기초연구)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Kim, Il Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.749-755
    • /
    • 2013
  • The purposes of this research are to know the optimal gab and electric pressure (voltage) of electrode-plates coated with activated carbon and also to study their arrangement through dust removal efficiency. From the experimental results of attached dust mass at different electrode-plate gab, the frequency of attachment and detachment of dust was more increased as electrode-plate gab was closer. In attached dust mass per unit area of electrode-plate, the farther electrode gab, the more increased. But in total attached dust mass, the closer electrode gab, the more removed. From the experimental results, the optimal electrode arrangement in dust removal chamber was considered that the forward parts of chamber need to be increased the number of electrode-plate, the backward parts to be increased them. The dust attachment have no relation with electric pressure while showing high removal efficiency under condition of 5 kV of voltage and 2 cm of electrode-plates gab.

Field Control Type Electrostatic Charge Neutralizer (전계 제어형 정전하 중화장치)

  • Jeong, Seok-Hwan;Lee, Dae-Hui;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.469-474
    • /
    • 1999
  • Methods and systems to remove static electricity are requested in the field of industry because the static electricity causes a flammable gas explosion or fire and a reduction of production rate in manufacturing semiconductor devices and so on. This paper is a basic study about a new structure of electrode system to control the quantities of generated ions and to solve the problem of dust attachment to needle electrode. In addition, a new type field controlled electrostatic charge neutralizer was proposed, and it could control the electric field in the end of the needle electrode by controlling the voltage of the third electrode around the tip of the needle electrode. As aresult, it was possible to control the quantities of generated ion by controlling the electric field in the needle electrode with the third electrode, which shows the possibilities to solve the nonequilibrium of generated ions in ac power source and the problem of the dust in the needle electrode.

  • PDF

The Effect of Electrical Characteristics and Electrode Shape on Alignment of Multi-walled Carbon Nanotubes (전기장 특성과 전극 형상이 다중벽 탄소나노튜브 정렬에 미치는 영향)

  • Kwon, Se-Hun;Jeong, Young-Keun;Jung, Chang-Sik;Kang, Myung-Chang;Lee, Hyung-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.326-335
    • /
    • 2010
  • In this paper, the effect of electrical characteristics and electrode shape on the alignment and attachment of multi-walled carbon nanotubes (MWNTs) has been studied. The attraction and alignment of MWNTs between the gaps has been investigated by applying electric field which is called electrophoresis and dielectrophoresis. According to the frequency of electric field, positive or negative dielectrophoretic force can be determined. The concentration of MWNTs solution was $5\;{\mu}g/ml$, and a droplet of $1.0{\sim}1.5\;{\mu}l$ was dropped between two electrodes. Through the repeated experiments, the optimal electrical conditions for aligning and attaching MWNTs in the desired places were obtained. Since the frequency range of 100 kHz~10 MHz generated positive dielectrophoretic force, MWNTs were attracted and aligned between the gaps with this frequency range. For generating enough force to attract MWNTs, the appropriate voltage range was $0.3{\sim}1.3\;V_{rms}/{\mu}m$. Furthermore, the effect of electrode shape on the alignment of MWNTs was investigated. A single MWNT attachment was accomplished on the round shaped with 70% yield.

Study on an Electrode Attachment Method Suitable for Underwater Electromyography Measurements

  • Han, Seul-ki;Park, Jung-seo;Nam, Taek-gil
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • PURPOSE: This study was conducted to devise a method of preventing water infiltration into the surface electrodes during EMG measurements underwater and on the ground and to check the reliability of Electromyography (EMG) measurements when underwater. METHODS: Six healthy adults were selected as subjects in this study. The measurements in this study were conducted in pool dedicated to underwater exercise and physical therapy room in the hospital building. An MP150 (Biopac Systems, US, 2010) and a BioNomadix 2-channel wireless EMG transmitter (Biopac Systems, US, 2012) was used to examine the muscle activity of rectus femoris, biceps femoris, tibialis anterior, gastrocnemius of dominant side. The subjects repeated circulation tasks on the ground for more than 10 min for enough surface electrode attachment movement. After a 15-min break, subjects performed the circulation task underwater(water depth 1.1m, water temperature $33.5^{\circ}C$, air temperature $27^{\circ}C$), as on the ground, for more than 10 min, and the MVIC of each muscle was measured again. SPSS v20.0 was used for all statistical computations. RESULTS: The maximum voluntary isometric contraction (MVIC) values between the underwater and on the ground measurements showed no significant differences in all four muscles and showed a high intraclass correlation coefficient (ICC) of >0.80. CONCLUSION: We determined that EMG measurements obtained underwater could be used with high reliability, comparable to ground measurements.

Removal of Dust in Positive and Negative Plates of Electrode Coated with Activated Carbon (활성탄으로 코팅된 전극에서 분진의 제거)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Nam, Sang Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.830-837
    • /
    • 2013
  • The purposes of this research are to know the dust removal efficiency according to the changes of gab between positive and negative plates in dust removal chamber. The experiments for dust removal efficiencies were conducted with changing the electrode-plate gab from 2 cm to 1 cm while the electric pressure, influent flow, and linear velocity were kept 5 kV, 80 L/min, and 6 cm/sec, respectively. From the experimental results of the electrode-plate gab of 2 cm, dust removal efficiencies were decreased to as low as about 50%. Attached dust on the surface of electrodes was released due to a reverse electric charge of dust. From the experimental results of the electrode-plate gab of 1 cm, dust removal efficiencies were increased to as high as about 80% due to the dust attachment velocity to the electrodes to be far more fast than influent linear velocity. Finally, to protect a attached dust from occurring a reverse electric charge it is needed to install the non-conductor between positive and negative electrodes and also to remove air humidity.

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

A Basic Study on the Attachment Process of Lightning Leader to Ground (낙뢰 리더의 대지부착과정에 대한 기초적 연구)

  • Yoo, Yang-Woo;Kim, Seung-Min;Kim, You-Ha;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.82-88
    • /
    • 2014
  • This paper presents the results of model tests for the attachment process of lightning leader to ground which is one of poorly understood processes of cloud-to-ground lightning discharges. In order to simulate the attachment process of lightning leader to ground, we investigated the discharge characteristics of air gap between the tip of needle-shaped electrode and the soil surface as a parameter of moisture content in soils when the positive and negative $1.2/50{\mu}s$ lightning impulse voltages are applied. The breakdown voltage and the discharge light were observed. As a result, the attachment processes of lightning leader to ground are strongly dependent on the grain size and the moisture content of soils. The time to breakdown was shortened with increasing the magnitude of incident impulse voltages. The delay time from application of the highest voltage to breakdown in sand is shortened with increasing the moisture content. The delay time from application of the voltage to breakdown in gravel varied from about $0.5{\mu}s$ to several ${\mu}s$. As the moisture content in soil increases, the breakdown voltages are decreased and the breakdown voltage versus time to breakdown curves are shifted toward the lower side. The results obtained in this work are similar to those for non-uniform air gap stressed by lightning impulse voltages.

A Study on the Intergrated Finishing Characteristics for Dies and Molds (금형의 복합연마 특성에 관한 연구)

  • 박준민;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.14-20
    • /
    • 1998
  • Automatic finishing process requires the development of high efficient and precision abrasive machining method for dies and molds. This study describes the evaluation of the finishing characteristics, such as surfrace roughness, topography and material removal depth of the electrolytic mixed abrasive machining methods. Experimental setup is composed of 3 axis machining center, a newly developed finishing attachment with constant pressure, electrode and electrolytic bath. Finally, we achieved a successful result that surface roughness is $0.01\mu$m Ra and material removal depth is $120\mu$m using electrolytic(0.8A. 30V) mixed abrasive (#400 CBN, #320 SiC) machining method.

  • PDF