DOI QR코드

DOI QR Code

The Effect of Electrical Characteristics and Electrode Shape on Alignment of Multi-walled Carbon Nanotubes

전기장 특성과 전극 형상이 다중벽 탄소나노튜브 정렬에 미치는 영향

  • Kwon, Se-Hun (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Jeong, Young-Keun (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Jung, Chang-Sik (School of Mechanical Engineering, Pusan National University) ;
  • Kang, Myung-Chang (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Lee, Hyung-Woo (National Core Research Center for Hybrid Materials Solution, Pusan National University)
  • 권세훈 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC)) ;
  • 정영근 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC)) ;
  • 정창식 (부산대학교 기계공학부) ;
  • 강명창 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC)) ;
  • 이형우 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC))
  • Received : 2010.07.12
  • Accepted : 2010.08.10
  • Published : 2010.08.28

Abstract

In this paper, the effect of electrical characteristics and electrode shape on the alignment and attachment of multi-walled carbon nanotubes (MWNTs) has been studied. The attraction and alignment of MWNTs between the gaps has been investigated by applying electric field which is called electrophoresis and dielectrophoresis. According to the frequency of electric field, positive or negative dielectrophoretic force can be determined. The concentration of MWNTs solution was $5\;{\mu}g/ml$, and a droplet of $1.0{\sim}1.5\;{\mu}l$ was dropped between two electrodes. Through the repeated experiments, the optimal electrical conditions for aligning and attaching MWNTs in the desired places were obtained. Since the frequency range of 100 kHz~10 MHz generated positive dielectrophoretic force, MWNTs were attracted and aligned between the gaps with this frequency range. For generating enough force to attract MWNTs, the appropriate voltage range was $0.3{\sim}1.3\;V_{rms}/{\mu}m$. Furthermore, the effect of electrode shape on the alignment of MWNTs was investigated. A single MWNT attachment was accomplished on the round shaped with 70% yield.

Keywords

References

  1. S. Iijima: Nature, 354 (1991) 56. https://doi.org/10.1038/354056a0
  2. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung and C. M. Lieber: Science, 289 (2000) 94. https://doi.org/10.1126/science.289.5476.94
  3. M. J. Biercuk, M. Mason and C. M. Marcus: Nano Lett., 4 (2004) 1. https://doi.org/10.1021/nl034696g
  4. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker: Science, 294 (2001) 1317. https://doi.org/10.1126/science.1065824
  5. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai: Science, 287 (2000) 622. https://doi.org/10.1126/science.287.5453.622
  6. K.Besteman, J. Lee, F. G. M. Wiertz, H. A. Heering and C. Dekker: Nano Lett., 3 (2003) 727. https://doi.org/10.1021/nl034139u
  7. H. W. Lee, S. H. Kim, C. S Han and Y. K. Kwak: Rev. Sci. Instrum., 76 (2005) 046108. https://doi.org/10.1063/1.1891445
  8. M. W. Rowell, M. A. Topinka, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner and M. D. McGehee: Appl. Phys. Lett., 88 (2006) 233506. https://doi.org/10.1063/1.2209887
  9. A. M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han and H. Dai: J. Am. Chem. Soc., 121 (1999) 7975. https://doi.org/10.1021/ja992083t
  10. J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert and R. E. Smalley: Chem. Phys. Lett., 303 (1999) 125.
  11. K. Yamamoto, S. Akita and Y. Nakayama: J. Phys. D: Appl. Phys., 31 (1998) L34. https://doi.org/10.1088/0022-3727/31/8/002
  12. H. A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric field, Cambridge university press, 1978.
  13. S. Kwon, S. H. Kim, K. H. Kim, M. C. Kang, and H. W. Lee: Trans. Nonferrous Met. Soc. China, accepted.