• 제목/요약/키워드: Electrode Model

검색결과 522건 처리시간 0.028초

구조체접지극 활용을 위한 모형블록의 저항률 분석 (Resistivity Analysis of Model Block for Using of Structure Grounding Electrode)

  • 김성삼;정만길;최종규;고희석
    • 조명전기설비학회논문지
    • /
    • 제21권2호
    • /
    • pp.40-45
    • /
    • 2007
  • 건축물의 기초를 구조체접지 및 대용접지극으로 활용하기 위한 기초실험으로 모형블록의 저항률 특성에 관해 검토하였다. 콘크리트와 몰탈의 모형블록을 제작 후 상온과 함수 상태에서 저항률을 측정하였으며, 저항률을 저감시키기 위해 접지저항 저감제를 혼합한 블록을 제작 하여 비교 하였다. 블록의 저항 값은 블록 저항률에 의해 가장 많은 영향을 받으며, 블록 저항률이 동일하거나 유사한 값일 때 대지저항률 값의 차이만큼 접지저항 값의 차이가 발생하였다.

B-Spline곡선을 이용한 지정된 전계조건하의 전극형상 설계 (Design of Electrode Shape with B-Spline Curve Under Specified Field Condition)

  • 김응식;박종근
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.964-975
    • /
    • 1990
  • This paper aims at the design of high voltage electrode contour under specified field condition. Defining the contour with B-Spline curve, the number of contour variables can be reduced and very smooth electrode can be obtained. For the analysis of the electric field, Surface Charge Method which has advantages in practical model has been used. As an initial contour, the rod-plane gap has been used since the difference between maximum and minimum field value is relatively large. Various field conditions including uniform field condition are given to the end of the rod electrode. Under uniform field condition, authors designed an electrode whose field-deviation was under 0.5%. Finally, the relation between the curvature and field of the electrode has been checked, which showed that B-Spline curve is appropriate for the shape function.

  • PDF

핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구 (Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries)

  • 정성일;이재근;정동규;안영철
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

고분자 지질막 전극 센서의 맛 반응 평가 (Taste Response of Electrodes Coated with Polymeric Lipid Membrane)

  • 조용진;박인선;김남수
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.249-258
    • /
    • 2002
  • The fourteen different electrodes coated with polymeric lipid membrane were evaluated to selectively monitor the sweet, salty, sour and bitter tastes, and umami. The polymeric lipid membrane consisted of the three components, or polymer matrix, plasticizer and electroactive material, the compositional ratio of which was 1:1.25:1. Herein, the 14 different electroactive materials were used. Sucrose, NaCl, citric acid, caffeine and MSG were used as standard materials of sweet, salty, sour and bitter tastes, and umami. The linear responses of each electrode regarding 5 tastes were analyzed by means of the correlation coefficient between electric potential difference and concentration of a taste material when the linearity was based on a linear model and a thermodynamic model, respectively. As fur salty taste, the electrode coated with valinomycin had a selective linearity at the significance level of 0.01. For monitoring sweet taste, the electrode with oleylamine and the electrode with the mixture of tai-n-octylmethylammonium chloride and dioctylphosphate (2:8) showed the significant linearities at the levels of 0.05 and 0.10, respectively.

직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증 (Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations)

  • 강경문;고요한;이기용;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

반구형 실험모델을 이용한 대지표면 전위상승의 분석 (Analysis of the Ground Surface Potential Rise using a Hemisphere-Shaped Test Model)

  • 유재덕;조용승;이복희
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.208-213
    • /
    • 2010
  • This paper deal with an analysis of the ground surface potential profiles using a hemispherical scaled-model. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the ground surface potential profile around the grounding electrodes according to the configuration of grounding electrodes. In this work, a hemispherical vessel with a diameter of 1,100 [mm] was employed to simulate uniform soil and CDEGS program was employed to compare the measured and simulated results. As a result, the ground surface potential around the grounding electrode was significantly raised and the ground surface potential at the just upper point of ground electrode particularly was higher than other points. The ground surface potential of counterpoise was higher than other grounding electrodes such as mesh and grounding rods and the ground surface potential strongly depends on the frequency responses of grounding electrodes. Also the results measured with the small-sized model were in reasonably agreement with the data obtained from simulation.

Utilization of Waste Aluminium Foil as a Sacrificial Electrode for the Treatment of Wastewater

  • Perumalsamy, Rajagopal;Kumaran, Chithra;Rajamanickam, Vaishali
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.92-100
    • /
    • 2021
  • In this study, the use of waste food grade aluminium foil and mild steel as a sacrificial electrode in an electrocoagulation system was developed to remove reactive red 111 from wastewater. The effect of different parameters like pH, current density, electrode material, and different electrode configurations was investigated. Optimum operating conditions for maximum COD removal were determined as, 6 mA/㎠ current density and 30 min at 5 pH for aluminium foil and 7 pH for mild steel. Maximum COD reduction obtained at optimum conditions using monopolar 4 electrodes, monopolar 2 electrodes and bipolar electrode configuration were 96.5%, 89.3%, and 90.2% for Mild steel as a sacrificial electrode and 92.1%, 84.2%, and 88.6% for aluminium foil as a sacrificial electrode. The consumption of electrode and energy for both the electrodes of different configurations were calculated and compared. Using batch experimental data, a continuous-flow reactor was developed. Sludge analysis using Fourier Transform Infra-Red Spectroscopy (FTIR) analysis was done. Different adsorption kinetic models and isotherms were developed and it was found that pseudo second-order model and Langmuir isotherm fit best with the experimental data obtained.

저항 네트워크 모델을 통한 LED 설계 (LED Design using Resistor Network Model)

  • 공명국;김도우
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.73-78
    • /
    • 2008
  • A resistor network model for the horizontal AlInGaN LED was investigated, The parameters of the proposed model are extracted from the test dies and $350{\mu}m$ LED, The center of the P-area is the optimal position of a P-electrode by the simulation using the model. Also the optimal chip size of the LED for the new target current was investigated, Comparing the simulation and fabrication result, the errors for the forward voltage and the light power are average 0,02 V, 8 % respectively, So the proposed resistor network model with the linear forward voltage approximation and the exponential light power model are useful in the simulation for the horizontal AlInGaN LED.

42″ AC-PDP의 방사특성에 대한 연구 (Investigation on Radiation Characteristics of 42″ AC-PDP)

  • 임헌용;김민석;박동욱;이정해
    • 한국전자파학회논문지
    • /
    • 제15권9호
    • /
    • pp.841-847
    • /
    • 2004
  • EMI emission characteristics of 42" AC-PDP panel are investigated in this paper. First, EMI emission source was modeled the scan electrode and the sustain electrode to a simple electric and magnetic dipole type radiator. Second, EMI emission source was modeled as reconfigured the scan electrode and the sustain electrode. The primary source of EMI emission was investigated using FEM calculation of the wave impedance and 3 dB beam width. The third. the EMI emission level was estimated using the measured sustain electrode current. Also, EMI emission level of 42" AC-PDP was measured. The results show that the calculated EMI emission level from the simple electric dipole model was shown to agree with that from the corresponding FEM simulation.

Simulation and Measurement of Characteristic in 450 mm CCP Plasma Source

  • 박기정;서상훈;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.508-508
    • /
    • 2012
  • CST microwave studio is used to simulate the plasma profile of the 450mm CCP source. Standing wave effect becomes important at the high frequency as the electrode radius increases. To solve plasma non-uniformity problem, we designed multi electrode chamber to decreasing standing wave effect. Simulation showed the ratio of input power of each electrode is related with electric field strength. The multi electrode was constructed and measured by 2D probe arrays using floating harmonic method. Uniformity of 450 mm CCP was changed by the ratio of input power of each electrode. We described this dependence with circuit model.

  • PDF