• 제목/요약/키워드: Electrode Diameter

검색결과 360건 처리시간 0.023초

Nb/Ni Clad 전극을 이용한 고효율 CCFL 개발 (Development of CCFL with Nb/Ni Gad Electrode for high efficiency)

  • 박기덕;양승수;박두성;김서윤;임영진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.441-443
    • /
    • 2005
  • According as CCFL(Cold Cathode Fluorescent lamp) of light source in Backlight unit for Note PC (Personal computer) is presently needed to low power consumption and long life time, the development focus of CCFL is going on the discharge gas, phosphor and electrode material. First of all, discharge voltage characteristic of CCFL is closely connected with electrode material For low discharge voltage, the characteristic of electrode material is needed to low work function, low sputtering ratio and superior manufacturing property. We developed new CCFL with Nb/Ni Clad electrode superior to conventional CCFL. Because Nb/Ni Clad electrode with Ni material and Nb material, the electrical characteristic is superior to other electrode materials. The electrode of Nb/Ni Clad is composed that Ni of outside material has superior manufacturing property and Nb of inside material has low work function. Nb/Ni Clad of new electrode material is made by process of Rolling mill at high pressure and heat treatment. We compared electrical characteristic of Nb/Ni clad electrode with conventional Mo electrode by measurement. Mo electrode and Nb/Ni Clad electrode of cup type with diameter 1.1 mm and length 3.0mm are used to this experiment. Material content of Mo electrode is Mo 100%. But, Nb/Ni Clad electrode is composed by content of Nb 40% and Ni 60%. The result of comparison measurement between new CCFL with Nb/Ni Clad electrode and conventional CCFL was appeared that CCFL with Nb/Ni Clad electrode had superior characteristic than conventional CCFL. As a result of experiment, we completed Note PC with low power consumption and long life time by application of new CCFL with Nb/Ni Clad electrode.

  • PDF

ED-Drilling의 방전가공 특성 (Machining Characteristics of ED-Drilling)

  • 김창호;허관도;예상돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.827-830
    • /
    • 2000
  • This paper describes the machining characteristics of the sintered carbide and die steel by electric discharge drilling with various tubular electrodes. Electrical discharge machining(EDM) removes material from the workpiece by a series of electrical sparks that cause localized temperatures high enough to melt or vaporise the metal in the vicinity of the charge. In the experiment, four types of electrode which have different diameter are used with the application of continuous direct current and axial electrode feed. The controlled factors include the dimension of the electrode. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole.

  • PDF

유리의 미세 가공을 위한 구리 전극군의 제작과 전기 화학 방전 가공 시험 (Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Micro Machining of Glass)

  • 정주명;심우영;정옥찬;양상식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권9호
    • /
    • pp.488-493
    • /
    • 2004
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining(ECDM) for glass machining. An array of 72 Cu electrodes is used to machine Borofloat33 glass. The height and diameter of a Cu electrode are 400 $\mu\textrm{m}$ and 100 $\mu\textrm{m}$ respectively. It is fabricated by ICP-RIE, Au-Au thermo-compression bonding, and copper electroplating. Borofloat33 glass is machined by the fabricated copper electrode array in 60 seconds at 55 V. The surface roughness of the machined glass is measured and the machined glass is anodically bonded with silicon.

선 대 평판형 플라즈마 반응기 제작을 위한 전위 및 전계 해석 (Simulation of Electric Potential and Electric Field for Wire-Plate Type Plasma Reactor Manufacture)

  • 이동훈
    • 전기학회논문지P
    • /
    • 제52권4호
    • /
    • pp.167-171
    • /
    • 2003
  • Due to advancement of industrialization, the flue gas from the combustion of industrial factories and various means of transportation have polluted air. Therefore, it is necessary to develop new techniques of air purification. In order to produce a more effective reactor, simulation were conducted using the Flux-II D program. The condition of the simulation were as follows: The height of the plate electrode was 0 mm or 2 mm higher than that of the wire electrode. The distance between the electrodes was 12 mm, and the diameter of the wire electrode was 0.5 mm or 1.0 mm. The results of the electric potential and electric field simulations show that pollutants will be more effectively removed due to the dielectric strength between wire electrode and plate electrode which was strong, and wire electrodes which were concentrated in a high electric field.

디스크형 압전 변압기의 전극 대칭성에 따른 전기적 특성 (A study on the electrical characteristics with the electrode symmetry of a disk-type piezoelectric transformer)

  • 이종필
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.835-840
    • /
    • 2011
  • 본 연구에서는 직경이 50mm, 두께가 4.5mm인 디스크형 압전 변압기의 구동부와 발전부의 전극에 대한 대칭성을 고려하여 2, 4 및 8등분으로 각각 분할하였다. 이렇게 분할된 압전 변압기에 부하저항을 변화($100{\Omega}{\sim}10_{K\Omega}$)시키면서 전기적 특성을 측정하고, 이를 토대로 한 압전변압기의 승압비 및 효율에 관한 메카니즘을 정량적으로 해석하였다.

Characterization of Nanopores on Micropillars Pt Electrodes for Non-Enzymatic Electrochemical Sensor Applications

  • Park, Dae-Joon;Lee, Yi-Jae;Park, Jae-Yeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권3호
    • /
    • pp.161-165
    • /
    • 2007
  • In this paper, mesoporous Pt on micro pillars Pt electrode is newly designed, fabricated, and characterized on silicon substrate for non-enzymatic electrochemical sensor micro-chip integrated with CMOS readout circuitry. The fabricated micro/nano Pt electrode has cylindrical hexangular arrayed nano Pt pores with a diameter of 3.2 nm which is formed on top of the micro pillars Pt electrode with approximately $6{\mu}m$ in diameter, $6{\mu}m$ in space, and $50{\mu}m$ in height. The measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $9.9nA/mm^2,\;6.72{\mu}A/mm^2,\;and\;7.67{\mu}A/mm^2$ in 10mM glucose solution with 0.1M phosphate buffered saline (PBS) solution, respectively. In addition, the measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $0.15{\mu}A/mm^2,\;0.56{\mu}A/mm^2,\;and\;0.74{\mu}A/mm^2$ in 0.1mM ascorbic acid (AA) solution with 0.1M phosphate buffered saline (PBS) solution, respectively. This experimental results show that the proposed micro/nano Pt electrode is highly sensitive and promising for CMOS integrated non-enzymatic electrochemical sensor applications. Since the micro-pillar Pt electrode can also be utilized with a micro-fluidic mixer in the sensor chip, the sensor chip can be much smaller, cheaper, and easier to be fabricated.

수중 전기장 센서용 다중 막대형 은-염화은 전극 개발 (Development of Multi-rod Type Ag-AgCl Electrodes for an Underwater Electric Field Sensor)

  • 이상규;양창섭;정현주
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.45-50
    • /
    • 2022
  • Multi-rod type Ag-AgCl electrodes have been developed for use in underwater electric field sensors. The developed cylindrical electrode had a diameter of 50 mm and a height of 130 mm. The electrode had five Ag-AgCl rods with a diameter of 2 mm and a height of 80 mm to enlarge the reaction surface area. Each Ag-AgCl rod was fabricated under the same conditions as the usual anodizing method in an electrolyte. The two developed electrodes were placed in the center of a 500-mm long, 400-mm wide, and 300-mm high acrylic tank filled with artificial seawater, at an interval of 100 mm, to evaluate their characteristics as uniaxial underwater electric field sensors. The underwater external electric field was generated using titanium plate electrodes installed at both ends of the tank. The noise level at 1 Hz of the developed electrode was approximately 3.7 nV/√Hz. The reception of the underwater electric field signal using the developed electrode was linear, within an error of approximately 0.6 %, in the range of 1-10000 ㎶/m at 1 Hz. In addition, its frequency response was flat within an error of 1.1 % in the range of 1-1000 Hz at 10000 ㎶/m.

방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측 (Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill)

  • 최용찬;허은영;김종민;이철수
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.

연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향 (Effect of Electrode Process Variables in case of Decomposition of $NO_{x}$ by SPCP)

  • 안형환;강현춘
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.241-258
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_{2}$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO and 84.7 % for $NO_{2}$ were observed at the power consumptions of 19.8 and 20W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3 mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

E.D.M 가공저간에 관한 실험적 연구 (Experimental research for the machining conditions of E. D. M)

  • 신근하
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.183-189
    • /
    • 1997
  • This research is a experimental study for the machining conditions of E. D. M. They were used Cu electrode and the various amplitude of current waves for the machining by E.D.M. By the analyse the characteristics of current, voltage, roughness of surface and over cut, the next results were obtained. E.D.M. machining time become to be more longer by the increasing the tensile stress. In case of NAK 55 as the composite resin, the machining time was more faster without the relationship for the tensile stress. And if it was more increased the amplitude of Ip, it has been more faster in the machining time and more poor in the surface roughness. But it was increased Ip with 5A, it has been increased 0.3 time in over cut. So, if we want to be the precision machining, the diameter of the electrode should be more smaller than the diameter of machined hole in workpiece with E.D.M.

  • PDF