• Title/Summary/Keyword: Electrochemically Active Microorganisms

Search Result 4, Processing Time 0.019 seconds

Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time (가축분뇨를 이용한 미생물연료전지의 농화배양 단계에서 미생물 군집 변화)

  • Jang, Jae Kyung;Hong, Sun Hwa;Ryou, Youg Sun;Lee, Eun Young;Chang, In Seop;Kang, Young Koo;Kim, Jong Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.973-977
    • /
    • 2013
  • These studies were attempted to investigate the change of microbial community of anode of microbial fuel cell using swine wastewater in the enrichment step with the lapse of time. Microbial fuel cells enriched by a 1 : 1 mixture of anaerobic digestive juices of the sewage treatment plant and livestock wastewater. Enrichment culture step was divided into three stages to indentify the microorganisms. It was separated by each lag phase, exponential phase, and stationary phase. These steps were determined by the change of the current value. The current after enrichment was generated about $0.84{\pm}0.06mA$. We were cut out the different 17 bands in the DGGE fingerprint gel to do sequencing. The bands which the concentration was increasing or newly appearing with the lapse of time were included for this study. In the lag and exponential phase, Clostridium, Rhodocyclaceae, Bacteriodetes, and Uncultured bacterium etc. were detected. There were in the stationary phase Geobacter sp., Rhodocyclaceae, Candidatus, Nitrospira, Flavobactriaceae and uncultured bacterium etc. Geobactor among microorganisms detected in this study is known as the Electrochemically active microorganisms. It may include electrochemically active microorganisms to be considered as electrical activity microorganisms.

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells

  • Kim, Minsoo;Song, Young Eun;Li, Shuwei;Kim, Jung Rae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.

Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria

  • Nam, Joo-Youn;Kim, Hyun-Woo;Lim, Kyeong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • To understand the effects of acclimation schemes on the formation of anode biofilms, different electrical performances are characterized in this study, with the roles of suspended and attached bacteria in single-chamber microbial fuel cells (MFCs). The results show that the generation of current in single-chamber MFCs is significantly affected by the development of a biofilm matrix on the anode surface containing abundant immobilized microorganisms. The long-term operation with suspended microorganisms was demonstrated to form a dense biofilm matrix that was able to reduce the activation loss in MFCs. Also, a Pt-coated anode was not favorable for the initial or long-term bacterial attachment due to its high hydrophobicity (contact angle = $124^{\circ}$), which promotes easy detachment of the biofilm from the anode surface. Maximum power ($655.0\;mW/m^2$) was obtained at a current density of $3,358.8\;mA/m^2$ in the MFCs with longer acclimation periods. It was found that a dense biofilm was able to enhance the charge transfer rates due to the complex development of a biofilm matrix anchoring the electrochemically active microorganisms together on the anode surface. Among the major components of the extracellular polymeric substance, carbohydrates ($85.7\;mg/m^2_{anode}$) and proteins ($81.0\;mg/m^2_{anode}$) in the dense anode biofilm accounted for 17 and 19%, respectively, which are greater than those in the sparse anode biofilm.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation

  • Pham, Hai The;Tran, Hien Thi;Vu, Linh Thuy;Dang, Hien The;Nguyen, Thuy Thu Thi;Dang, Thu Ha Thi;Nguyen, Mai Thanh Thi;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1104-1116
    • /
    • 2019
  • In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of $2.3mA/m^2$ anode surface and an average power density of $0.05mW/m^2$ anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.