Acknowledgement
This study was supported by a two-year research grant from Pusan National University, Korea.
References
- Y.E. Song, M.M. El-Dalatony, C. Kim, M.B. Kurade, B.-H. Jeon, J.R. Kim, Int. J. Hydrog. Energy., 2019, 44(4), 2372-2379. https://doi.org/10.1016/j.ijhydene.2018.08.151
- Y.E. Song, H.C. Boghani, H.S. Kim, B.G. Kim, T. Lee, B.-H. Jeon, G.C. Premier, J.R. Kim, Energies. 2017, 10(5), 596. https://doi.org/10.3390/en10050596
- J.R. Kim, S. Cheng, S.-E. Oh, B.E. Logan, Environ. Sci. Technol., 2007, 41(3), 1004-1009. https://doi.org/10.1021/es062202m
- T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z.J. Ren, Bioresour. Technol., 2014, 157, 114-119. https://doi.org/10.1016/j.biortech.2014.01.058
- S. Pandit, V. Patel, M. Ghangrekar, D. Das, J. Environ. Manage., 2014, 17(2-4), 252-267.
- Y. Yuan, S.-H. Kim, Bull Korean Chem Soc., 2008, 29(7), 1344-1348. https://doi.org/10.5012/bkcs.2008.29.7.1344
- J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Bioresour. Technol., 2012, 114, 275-280. https://doi.org/10.1016/j.biortech.2012.02.116
- Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, J. Power Sources., 2010, 195(4), 1130-1135. https://doi.org/10.1016/j.jpowsour.2009.08.092
- P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Bioresour. Technol., 2008, 99(18), 8895-8902. https://doi.org/10.1016/j.biortech.2008.04.061
- M. Di Lorenzo, K. Scott, T.P. Curtis, I.M. Head, Chem. Eng. J., 2010, 156(1), 40-48. https://doi.org/10.1016/j.cej.2009.09.031
- C. Kim, J.H. Lee, J. Baek, D.S. Kong, J.-G. Na, J. Lee, E. Sundstrom, S. Park, J.R. Kim, ChemSusChem. 2020, 13(3), 564-573. https://doi.org/10.1002/cssc.201902928
- K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Technol., 2005, 39(20), 8077-8082. https://doi.org/10.1021/es050986i
- P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 2006, 40(10), 3388-3394. https://doi.org/10.1021/es0525511
- K. Rabaey, L. Angenent, U. Schroder, J. Keller, Bioelectrochemical systems, IWA publishing, London, 2009.
- X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle, Y. Cui, Energy Environ. Sci., 2012, 5(1), 5265-5270. https://doi.org/10.1039/C1EE02122B
- S. Lee, H. min Kim, D.G. Seong, D. Lee, Carbon. 2019, 143, 650-659. https://doi.org/10.1016/j.carbon.2018.11.050
- S. Wanci, W. Shizhu, C. Naizhen, Z. Lu, Z. Wei, Carbon (New York, NY). 1999, 37(2), 356-358. https://doi.org/10.1016/S0008-6223(99)90003-9
- M.F. Veloz-Castillo, A. Paredes-Arroyo, G. Vallejo-Espinosa, J.F. Delgado-Jimenez, J.L. Coffer, R. Gonzalez-Rodriguez, M.E. Mendoza, J. Campos-Delgado, M.A. Mendez-Rojas, Can J Chem., 2020, 98(1), 49-55. https://doi.org/10.1139/cjc-2019-0244
- J. Huang, Q. Tang, W. Liao, G. Wang, W. Wei, C. Li, Ind. Eng. Chem. Res., 2017, 56(18), 5253-5261. https://doi.org/10.1021/acs.iecr.6b04860
- I. Bavasso, L. Di Palma, E. Petrucci, Chem. Eng. Trans., 2016, 47, 223-228.
- M.Y. Kim, C. Kim, S.K. Ainala, H. Bae, B.-H. Jeon, S. Park, J.R. Kim, Bioelectrochemistry. 2019, 125, 1-7. https://doi.org/10.1016/j.bioelechem.2018.08.002
- H.-Y. Dai, H.-M. Yang, X. Liu, X. Jian, Z.-H. Liang, ACTA METALL SIN-ENGL., 2016, 29(5), 483-490. https://doi.org/10.1007/s40195-016-0412-3
- Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han, C. Li, Langmuir. 2003, 19, 731-736. https://doi.org/10.1021/la020670d
- X. Han, T. Zhao, X. Gao, H. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018, 542, 1-7.
- B. Zhang, Y. Tian, X. Jin, T.Y. Lo, H. Cui, Materials. 2018, 11(11), 2205. https://doi.org/10.3390/ma11112205
- O. Guler, S.H. Guler, V. Selen, M.G. Albayrak, E. Evin, Fuller. Nanotub. Carbon Nanostructures., 2016, 24(2), 123-127. https://doi.org/10.1080/1536383X.2015.1114472
- Z. Wang, R. Qi, J. Wang, S. Qi, Ceram. Int., 2015, 41(10), 13541-13546. https://doi.org/10.1016/j.ceramint.2015.07.148