DOI QR코드

DOI QR Code

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells

  • Kim, Minsoo (School of Chemical Engineering, Pusan National University) ;
  • Song, Young Eun (School of Chemical Engineering, Pusan National University) ;
  • Li, Shuwei (School of Chemical Engineering, Pusan National University) ;
  • Kim, Jung Rae (School of Chemical Engineering, Pusan National University)
  • Received : 2020.12.16
  • Accepted : 2021.03.24
  • Published : 2021.08.28

Abstract

Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.

Keywords

Acknowledgement

This study was supported by a two-year research grant from Pusan National University, Korea.

References

  1. Y.E. Song, M.M. El-Dalatony, C. Kim, M.B. Kurade, B.-H. Jeon, J.R. Kim, Int. J. Hydrog. Energy., 2019, 44(4), 2372-2379. https://doi.org/10.1016/j.ijhydene.2018.08.151
  2. Y.E. Song, H.C. Boghani, H.S. Kim, B.G. Kim, T. Lee, B.-H. Jeon, G.C. Premier, J.R. Kim, Energies. 2017, 10(5), 596. https://doi.org/10.3390/en10050596
  3. J.R. Kim, S. Cheng, S.-E. Oh, B.E. Logan, Environ. Sci. Technol., 2007, 41(3), 1004-1009. https://doi.org/10.1021/es062202m
  4. T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z.J. Ren, Bioresour. Technol., 2014, 157, 114-119. https://doi.org/10.1016/j.biortech.2014.01.058
  5. S. Pandit, V. Patel, M. Ghangrekar, D. Das, J. Environ. Manage., 2014, 17(2-4), 252-267.
  6. Y. Yuan, S.-H. Kim, Bull Korean Chem Soc., 2008, 29(7), 1344-1348. https://doi.org/10.5012/bkcs.2008.29.7.1344
  7. J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Bioresour. Technol., 2012, 114, 275-280. https://doi.org/10.1016/j.biortech.2012.02.116
  8. Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, J. Power Sources., 2010, 195(4), 1130-1135. https://doi.org/10.1016/j.jpowsour.2009.08.092
  9. P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Bioresour. Technol., 2008, 99(18), 8895-8902. https://doi.org/10.1016/j.biortech.2008.04.061
  10. M. Di Lorenzo, K. Scott, T.P. Curtis, I.M. Head, Chem. Eng. J., 2010, 156(1), 40-48. https://doi.org/10.1016/j.cej.2009.09.031
  11. C. Kim, J.H. Lee, J. Baek, D.S. Kong, J.-G. Na, J. Lee, E. Sundstrom, S. Park, J.R. Kim, ChemSusChem. 2020, 13(3), 564-573. https://doi.org/10.1002/cssc.201902928
  12. K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Technol., 2005, 39(20), 8077-8082. https://doi.org/10.1021/es050986i
  13. P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 2006, 40(10), 3388-3394. https://doi.org/10.1021/es0525511
  14. K. Rabaey, L. Angenent, U. Schroder, J. Keller, Bioelectrochemical systems, IWA publishing, London, 2009.
  15. X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle, Y. Cui, Energy Environ. Sci., 2012, 5(1), 5265-5270. https://doi.org/10.1039/C1EE02122B
  16. S. Lee, H. min Kim, D.G. Seong, D. Lee, Carbon. 2019, 143, 650-659. https://doi.org/10.1016/j.carbon.2018.11.050
  17. S. Wanci, W. Shizhu, C. Naizhen, Z. Lu, Z. Wei, Carbon (New York, NY). 1999, 37(2), 356-358. https://doi.org/10.1016/S0008-6223(99)90003-9
  18. M.F. Veloz-Castillo, A. Paredes-Arroyo, G. Vallejo-Espinosa, J.F. Delgado-Jimenez, J.L. Coffer, R. Gonzalez-Rodriguez, M.E. Mendoza, J. Campos-Delgado, M.A. Mendez-Rojas, Can J Chem., 2020, 98(1), 49-55. https://doi.org/10.1139/cjc-2019-0244
  19. J. Huang, Q. Tang, W. Liao, G. Wang, W. Wei, C. Li, Ind. Eng. Chem. Res., 2017, 56(18), 5253-5261. https://doi.org/10.1021/acs.iecr.6b04860
  20. I. Bavasso, L. Di Palma, E. Petrucci, Chem. Eng. Trans., 2016, 47, 223-228.
  21. M.Y. Kim, C. Kim, S.K. Ainala, H. Bae, B.-H. Jeon, S. Park, J.R. Kim, Bioelectrochemistry. 2019, 125, 1-7. https://doi.org/10.1016/j.bioelechem.2018.08.002
  22. H.-Y. Dai, H.-M. Yang, X. Liu, X. Jian, Z.-H. Liang, ACTA METALL SIN-ENGL., 2016, 29(5), 483-490. https://doi.org/10.1007/s40195-016-0412-3
  23. Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han, C. Li, Langmuir. 2003, 19, 731-736. https://doi.org/10.1021/la020670d
  24. X. Han, T. Zhao, X. Gao, H. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018, 542, 1-7.
  25. B. Zhang, Y. Tian, X. Jin, T.Y. Lo, H. Cui, Materials. 2018, 11(11), 2205. https://doi.org/10.3390/ma11112205
  26. O. Guler, S.H. Guler, V. Selen, M.G. Albayrak, E. Evin, Fuller. Nanotub. Carbon Nanostructures., 2016, 24(2), 123-127. https://doi.org/10.1080/1536383X.2015.1114472
  27. Z. Wang, R. Qi, J. Wang, S. Qi, Ceram. Int., 2015, 41(10), 13541-13546. https://doi.org/10.1016/j.ceramint.2015.07.148