• Title/Summary/Keyword: Electrochemical technology

Search Result 2,626, Processing Time 0.026 seconds

Applying an Artificial Neural Network to the Control System for Electrochemical Gear-Tooth Profile Modifications

  • Jianjun, Yi;Yifeng, Guan;Baiyang, Ji;Bin, Yu;Jinxiang, Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • Gears, crucial components in modern precision machinery for power transmission mechanisms, are required to have low contacting noise with high torque transmission, which makes the use of gear-tooth profile modifications and gear-tooth surface crowning extremely efficient and valuable. Due to the shortcomings of current techniques, such as manual rectification, mechanical modification, and numerically controlled rectification, we propose a novel electrochemical gear-tooth profile modification method based on an artificial neural network control technique. The fundamentals of electrochemical tooth-profile modifications based on real-time control and a mathematical model of the process are discussed in detail. Due to the complex and uncertain relationships among the machining parameters of electrochemical tooth-profile modification processes, we used an artificial neural network to determine the required processing electric current as the tooth-profile modification requirements were supplied. The system was implemented and a practical example was used to demonstrate that this technology is feasible and has potential applications in the production of precision machinery.

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Effect of Solution Temperature on the Cavitation Corrosion Properties of Carbon Steel and its Electrochemical Effect

  • Jeon, J.M.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.325-334
    • /
    • 2021
  • In the open system (vessel and pipe), the maximum corrosion rate of carbon steel at ca. 80 ℃ was obtained due to the decrease of dissolved oxygen by increasing the solution temperature. Effect of temperature on the cavitation damage can be explained through several mechanisms. Moreover, when cavitation occurs on the surface of metal and alloys, whether cavitation is erosion or corrosion is still controversial. This work focused on the effect of solution temperature on the corrosion of carbon steel under cavitation in an open system, Tests were performed using an electrochemical cavitation corrosion tester in 3.5% NaCl solution and the effect of solution temperature of carbon steel was discussed. Cavitation corrosion rate can be increased by cavitation, but when the temperature increases, a dissolved oxygen content reduces at a very high speed and thus the maximum cavitation corrosion temperature changed from 80 ℃ to 45 ℃. Below the maximum cavitation temperature, the electrochemical effect was more dominant than the mechanical effect by increasing temperature, but over the maximum cavitation temperature, the mechanical effect was more dominant than the electrochemical effect by increasing temperature.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design

  • Taejung Lim;Jinjong Kim;Sang Hoon Joo
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2023
  • The electrochemical chlorine evolution reaction (CER) is an important electrochemical reaction and has been widely used in chlor-alkali electrolysis, on-site generation of ClO-, and Cl2-mediated electrosynthesis. Although precious metal-based mixed metal oxides (MMOs) have been used as CER catalysts for more than half a century, they intrinsically suffer from a selectivity problem between the CER and parasitic oxygen evolution reaction (OER). Hence, the design of selective CER electrocatalysts is critically important. In this review, we provide an overview of the fundamental issues related to the electrocatalysis of the CER and design strategies for selective CER electrocatalysts. We present experimental and theoretical methods for assessing the active sites of MMO catalysts and the origin of the scaling relationship between the CER and the OER. We discuss kinetic analysis methods to understand the kinetics and mechanisms of CER. Next, we summarize the design strategies for new CER electrocatalysts that can enhance the reactivity of MMO-based catalysts and overcome their scaling relationship, which include the doping of MMO catalysts with foreign metals and the development of non-precious metal-based catalysts and atomically dispersed metal catalysts.

Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production

  • Choi, Insoo;Jung, Yoo Eil;Yoo, Sung Jong;Kim, Jin Young;Kim, Hyoung-Juhn;Lee, Chang Yeon;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Electrochemical conversion of $CO_2$ and production of $H_2$ were attempted on a three-dimensionally ordered, porous metal organic framework (MOF-74) in which transition metals (Co, Ni, and Zn) were impregnated. A lab-scale proton exchange membrane-based electrolyzer was fabricated and used for the reduction of $CO_2$. Real-time gas chromatography enabled the instantaneous measurement of the amount of carbon monoxide and hydrogen produced. Comprehensive calculations, based on electrochemical measurements and gaseous product analysis, presented a time-dependent selectivity of the produced gases. M-MOF-74 samples with different central metals were successfully obtained because of the simple synthetic process. It was revealed that Co- and Ni-MOF-74 selectively produce hydrogen gas, while Zn-MOF-74 successfully generates a mixture of carbon monoxide and hydrogen. The results indicated that M-MOF-74 can be used as an electrocatalyst to selectively convert $CO_2$ into useful chemicals.

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

A Review of Electrochemical Hydrogen Compressor Technology (전기화학적 수소 압축기 기술)

  • KIM, SANG-KYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Spinel Nanoparticles ZnCo2O4 as High Performance Electrocatalyst for Electrochemical Sensing Antibiotic Chloramphenicol

  • Van-Cuong Nguyen;HyunChul Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.152-160
    • /
    • 2024
  • In this study, ZnCo2O4 nanoparticles were synthesized via the coprecipitation method using different annealing temperatures from 200℃ to 800℃. By varying the treatment temperature, the morphology changed from amorphous to tetragonal, and finally to polygonal particles. As temperature increased, the sizes of the nanoparticles also changed from 5 nm at 200℃ to approximately 500 nm at 800℃. The fabricated material was used to modify the working electrode of a screen-printed carbon electrode (SPE), which was subsequently used to survey the detection performance of the antibiotic, chloramphenicol (CAP). The electrochemical results revealed that the material exhibits a good response to CAP. Further, the sample that annealed at 600℃ displayed the best performance, with a linear range of 1-300 μM, and a limit of detection (LOD) of 0.15 μM. The sensor modified with ZnCo2O4 also exhibited the potential for utilitarian application when the recovery in a real sample was above 97%.