DOI QR코드

DOI QR Code

Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production

  • Choi, Insoo (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Jung, Yoo Eil (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jin Young (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Lee, Chang Yeon (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • Received : 2016.11.09
  • Accepted : 2017.01.20
  • Published : 2017.03.31

Abstract

Electrochemical conversion of $CO_2$ and production of $H_2$ were attempted on a three-dimensionally ordered, porous metal organic framework (MOF-74) in which transition metals (Co, Ni, and Zn) were impregnated. A lab-scale proton exchange membrane-based electrolyzer was fabricated and used for the reduction of $CO_2$. Real-time gas chromatography enabled the instantaneous measurement of the amount of carbon monoxide and hydrogen produced. Comprehensive calculations, based on electrochemical measurements and gaseous product analysis, presented a time-dependent selectivity of the produced gases. M-MOF-74 samples with different central metals were successfully obtained because of the simple synthetic process. It was revealed that Co- and Ni-MOF-74 selectively produce hydrogen gas, while Zn-MOF-74 successfully generates a mixture of carbon monoxide and hydrogen. The results indicated that M-MOF-74 can be used as an electrocatalyst to selectively convert $CO_2$ into useful chemicals.

Keywords

References

  1. P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber and T.E. Muller, Energy Environ. Sci, 2002, 5(6), 7281-7305. https://doi.org/10.1039/c2ee03403d
  2. K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, ChemSusChem, 2010, 3(6), 644-644. https://doi.org/10.1002/cssc.201090023
  3. I. Ganesh, Renew. Sustainable Energy Rev, 2014, 31, 221-257. https://doi.org/10.1016/j.rser.2013.11.045
  4. C.M. Pradier, in: J. Paul, C.M. Pradier (Eds.), Carbon Dioxide Chemistry: Environmental Issues, The Royal Soc. Chem., Cambridge,, UK, 1994, pp. 3-4.
  5. M. Peters, B. Kohler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Muller, ChemSusChem, 2011, 4(9), 1216-1240. https://doi.org/10.1002/cssc.201000447
  6. A.S. Hawkins, P.M. McTernan, H. Lian, R.M. Kelly, M.WW. Adams, Curr. Opin. Biotechnol, 2013, 24(3), 376-384. https://doi.org/10.1016/j.copbio.2013.02.017
  7. Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., & Wang, Y, Angew. Chem, 2013, 125(22), 5888-5891. https://doi.org/10.1002/ange.201301473
  8. S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, ACS Nano, 2010, 4(3), 1259-1278. https://doi.org/10.1021/nn9015423
  9. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc, 2014, 136(40), 14107-14113. https://doi.org/10.1021/ja505791r
  10. C. Costentin, M. Roberta, J-M. Saveant, Chem. Soc. Rev, 2013, 42(6), 2423-2436. https://doi.org/10.1039/C2CS35360A
  11. H-Y. Kim, I. Choi, S.H. Ahn, S.J. Hwang, S.J. Yoo, J. Han, J. Kim, H. Park, J.H. Jang, S-K. Kim, Int. J. Hydrogen Energ, 2014, 39(29), 16506-16512. https://doi.org/10.1016/j.ijhydene.2014.03.145
  12. J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc, 2013, 135(24), 8798-8801. https://doi.org/10.1021/ja4033549
  13. S. Zhang, P. Kang, T.J. Meyer, J. Am. Chem. Soc, 2014, 136(5), 1734-1737. https://doi.org/10.1021/ja4113885
  14. S.R. Narayanan, B. Haines, J. Soler, T.I. Valdez, J. Electrochem. Soc, 2011, 158(2), A167-A173. https://doi.org/10.1149/1.3526312
  15. M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Chem. Eng. J, 2012, 207, 278-284.
  16. A.A. Peterson, J.K. Norskov, Phys. Chem. Lett, 2012, 3(2), 251-258. https://doi.org/10.1021/jz201461p
  17. B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. A. Kenis, R.I. Masel, Science, 2011, 334 (6056) 643-644. https://doi.org/10.1126/science.1209786
  18. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc, 2012, 134(49), 19969-19972. https://doi.org/10.1021/ja309317u
  19. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc, 2013, 135(45), 16833-16836. https://doi.org/10.1021/ja409445p
  20. D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, ACS Catal, 2015, 5 (5), 2814-2821. https://doi.org/10.1021/cs502128q
  21. Y. Hori, in: C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, (Eds.) Modern Aspects of Electrochemistry no. 42, Springer, New York, 2008, pp. 89-189.
  22. S. Kuwabata, R. Tsuda, H. Yoneyama, J. Am. Chem. Soc, 1994, 116 (12), 5437-5443. https://doi.org/10.1021/ja00091a056
  23. K. Sugimura, S. Kuwabata. H. Yoneyama, J. Am. Chem. Soc, 1989, 111 (6), 2361-2362. https://doi.org/10.1021/ja00188a093
  24. H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett, 2013, 4(3) 388-392. https://doi.org/10.1021/jz3021155
  25. I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, J.T. Hupp, ACS Catal, 2015, 5 (11), 6302-6309. https://doi.org/10.1021/acscatal.5b01767
  26. N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, Peidong Yang, J. Am. Chem. Soc, 2015, 137(44), 14129-14135. https://doi.org/10.1021/jacs.5b08212
  27. R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Electrochem. Commun, 2012, 25, 70-73. https://doi.org/10.1016/j.elecom.2012.09.018
  28. R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba, Y. Yamada, ECS Electrochem. Lett, 2012, 1(4), H17-H19. https://doi.org/10.1149/2.001204eel
  29. X. Dai, M. Liu, Z. Li, A. Jin, Y. Ma, X. Huang, H. Sun, H. Wang, X. Zhang, J. Phys. Chem.C, 2016, 120 (23), 12539-12548. https://doi.org/10.1021/acs.jpcc.6b02818
  30. W. Guo, H. Lv, Z. Chen, K.P. Sullivan, S.M. Lauinger, Y. Chi, J.M. Sumliner, T. Lian, C.L. Hill, J. Mater. Chem. A, 2016, 4 (16), 5952-5957. https://doi.org/10.1039/C6TA00011H
  31. J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, J.R. Long, Energy Environ. Sci, 2011, 4 (8) 3030-3040. https://doi.org/10.1039/c1ee01720a
  32. D-A. Yang, H-Y. Cho, J. Kim, S-T. Yang, W-S. Ahn, Energy Environ. Sci, 2012, 5(4), 6465-6473. https://doi.org/10.1039/C1EE02234B
  33. H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc, 2009, 131(13) 4995-5000. https://doi.org/10.1021/ja900258t
  34. S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, J. Am. Chem. Soc, 2008, 130(33) 10870-10871. https://doi.org/10.1021/ja8036096
  35. J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc, 2006, 128(4), 1304-1315. https://doi.org/10.1021/ja056639q
  36. B. Gole, U. Sanyal, R. Banerjee, P.S. Mukherjee, Inorg. Chem, 2016, 55(5), 2345-2354. https://doi.org/10.1021/acs.inorgchem.5b02739
  37. J. Zhu, M. Xiao, Y. Zhang, Z. Jin, Z. Peng, C. Liu, S. Chen, J. Ge, W. Xing, ACS Catalm 2016, 6(10), 6335-6342. https://doi.org/10.1021/acscatal.6b01503
  38. R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, Nano Res, 2015, 8(10), 3237-3249. https://doi.org/10.1007/s12274-015-0824-9
  39. E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem, 2014, 126 (21) 5531-5534. https://doi.org/10.1002/ange.201402646
  40. S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H-J. Kim, J.H. Jang, S.W. Nam, T-H. Lim, T. Lim, S-K. Kim, J.J. Kim, J. Mater. Chem, 2012, 22(30), 15153-15159. https://doi.org/10.1039/c2jm31439h
  41. M. Gong, D-Y. Wang, C-C. Chen, B-J. Hwang, H. Dai, Nano Res, 2016, 9(1), 28-46. https://doi.org/10.1007/s12274-015-0965-x
  42. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta, 1994, 39(11-12), 1833-1839. https://doi.org/10.1016/0013-4686(94)85172-7
  43. K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem, 1995, 391(1-2), 141-147. https://doi.org/10.1016/0022-0728(95)03935-A
  44. C. Zhang, S.Y. Hwang, Z. Peng, J. Mater. Chem, 2013, A 1(45), 14402-14408.
  45. E. M. Sherif, Molecules, 2014, 19(7), 9962-9974. https://doi.org/10.3390/molecules19079962
  46. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc, 2012, 134(49), 19969-19972. https://doi.org/10.1021/ja309317u

Cited by

  1. Reduction: Progress, Challenges, and Perspectives pp.09476539, 2018, https://doi.org/10.1002/chem.201803083