• 제목/요약/키워드: Electrochemical technique

검색결과 413건 처리시간 0.025초

펄스 전기화학 복합가공기술을 적용한 미세 그루브 가공 (Machining of Micro Grooves using Hybrid Electrochemical Processes with Voltage Pulses)

  • 이은상;박정우;문영훈
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.32-39
    • /
    • 2003
  • Pulse electrochemical machining process with high or low current density may produce a non-lustrous surface on workpiece surface. The usual polishing process to remove a black layer from the surface has been hand polish the part. But the milli-to-micro meter scale structure formed by the electrochemical machining process may be destroyed while polishing process. The application of ultra short voltage pulses based on the analysis of electrical double layer charging process allows high resolution electrochemical machining and polishing. This technique was based on the specific polarization resistance from the comparison of ideal and experimental potential variation during short voltage pulses.

Electrochemical Parameters with unusual Alternating Current Phase-Angles

  • Rashwan Farouk;Mohran Hossnia
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.80-82
    • /
    • 2004
  • The a.c. technique is employed to evaluate electrochemical characteristics of Naphthalie-1,4,5,8-tetracarboxylic acid bisanilide (NTB). The measurements were carried out in dry and pure propionitrle (PCN) and acetonitrile(CAN) at the hanging mercury drop electrode [HMDE). An A.C. phase sensitive detector using computer controlled lock-in amplifier was employed. Primary goal of this report, was to establish on a firm the rare behavior of the phase angle associated with a.c. polarograms of the compound. Although, not an initial goal of this study, the electron transfer rate parameters attending the electroreduction of the compound under investigation were determined. This because the results shed some light on the electrokinetics in aprotic solvent which until recently negligible data were available. Experimental Results and comparison of data obtained are reported. The good precision of the method makes it suitable for studying electrochemical data with unusual behavior at electrodes in non aqueous media.

Electrochemical Studies on the Mechanism of the Fabrication of Ceramic Films by Hydrothermal-Electrochemical Technique

  • Zhibin Wu;Masahiro Yoshimura
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.869-874
    • /
    • 1999
  • In this paper, electrochemical techniques are used to investigate hydrothermal-electrochemically formation of barium titanate (BT) ceramic films. For comparison, the electrochemical behaviors of anodic titanium oxide films formed in alkaline solution were also investigated both at room temperature and in hydrothermal condition at 150.0 ℃. Film structure and morphology were identified by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Titanium oxide films produced at different potentials exhibit different film morphology. The breakdown of titanium oxide films anodic growth on Ti electrode plays an important roles in the formation of BT films. BT films can grow on anodic oxide/metal substrate interface by short-circuit path, and the dissolution-precipitation processes on the ceramic film/solution interface control the film structure and morphology. Based upon the current experimental results and our previous work, extensively schematic proce-dures are proposed to model the mechanism of ceramic film formation by hydrothermal-electrochemical method.

전기화학기법에 의한 슈퍼 오스테나이트 스테인리스강의 열화손상 평가 (An Evaluation of Degraded Damage for Superaustenitic Stainless Steel by Electrochemical Polarization Technique)

  • 권일현;이송인;백승세;이종기;;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.143-148
    • /
    • 2001
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000hrs$. and investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain bounderies seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain bounderies and promote the current density observed in electrochemical polarization curves. The electrochemical and mechanical properties of superaustenitic stainless steel was drastically decreased in the specimen aged at $650^{\circ}C$.

  • PDF

Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes

  • Cho, Sanghyun;Liu, Lichun;Yoo, Sang-Hoon;Jang, Ho-Young;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1462-1466
    • /
    • 2013
  • We demonstrate that ruthenium oxide ($RuO_2$) nanotubes with controlled dimensions can be synthesized using facile electrochemical means and anodic aluminum oxide (AAO) templates. $RuO_2$ nanotubes were formed using a cyclic voltammetric deposition technique and an aqueous plating solution composed of $RuCl_3$. Linear sweep voltammetry (LSV) was used to determine the effective electrochemical oxidation potential of $Ru^{3+}$ to $RuO_2$. The length and wall thickness of $RuO_2$ nanotubes can be adjusted by varying the range and cycles of the electrochemical cyclic voltammetric potentials. Thick-walled $RuO_2$ nanotubes were obtained using a wide electrochemical potential range (-0.2~1 V). In contrast, an electrochemical deposition potential range from 0.8 to 1 V produced thin-walled and longer $RuO_2$ nanotubes in an identical number of cycles. The dependence of wall thickness and length of $RuO_2$ nanotubes on the range of cyclic voltammetric electrochemical potentials was attributed to the distinct ionic diffusion times. This significantly improves the ratio of surface area to mass of materials synthesized using AAO templates. Furthermore, this study is directive to the controlled synthesis of other metal oxide nanotubes using a similar strategy.

Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN)

  • Song, Woo Jae;Choi, Seung Geon;Lee, Eun-Sang
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.276-283
    • /
    • 2019
  • Nitinol is an alloy of nickel and titanium. Nitinol is one of the shape memory alloys(SMA) that are restored to a remembered form, changing the crystal structure at a given temperature. Because of these unique features, it is used in medical devices, high precision sensors, and aerospace industries. However, the conventional method of mechanical machining for nitinol has problems of thermal and residual stress after processing. Therefore, the electrochemical machining(ECM), which does not produce residual stress and thermal deformation, has emerged as an alternative processing technique. In addition, to replace the existing experimental planning methods, this study used deep neural network(DNN), which is the basis for AI. This method was shown to be more useful than conventional method of design of experiments(RSM, Taguchi, Regression) by applying deep neural network(DNN) to electrochemical machining(ECM) and comparing root mean square errors(RMSE). Comparison with actual experimental values has shown that DNN is a more useful method than conventional method. (DOE - RSM, Taguchi, Regression). The result of the machining was accurately and efficiently predicted by applying electrochemical machining(ECM) and deep neural network(DNN) to the shape memory alloy(SMA), which is a hard-mechinability material.

Electrochemical Noise Analysis on the General Corrosion of Mild steel in Hydrochloric Acid Solution

  • Seo, Do-Soo;Lee, Kwang-Hak;Kim, Heung-Sik
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.319-323
    • /
    • 2008
  • The polarization resistance of mild steel in 0.5M hydrochloric acid has been evaluated by using impedance (Z) and linear polarization (LPR) techniques and compared to the noise resistance obtained from electrochemical noise data. The degree of localization of this general corrosion has also been discussed by evaluating localization index and power spectral density. Polarization resistance obtained by LPR technique ($28\Omega$) was higher than that obtained by impedance technique ($15\Omega$). Noise resistance ($11\Omega$) was much lower than polarization resistance measured by both of above techniques. Higher polarization resistance obtained by LPR technique is generally caused by passivation effect in the presence of scales or deposits which can introduce an increased resistance as can low conductivity electrolytes. The reason why noise resistance is lower than polarization resistance is the effect of background noise detected by using three platinum electrodes cell in 0.5M hydrochloric acid. Slope($-\beta$) of power spectral density (PSD) obtained from analysis of noise data ($-\beta$ = 3.3) was much higher than 2 which indicates mild steel corroded uniformly. Localization index (LI) calculated from statistical analysis (LI=0.08) is much lower than 1 which indicates that mild steel did not corroded locally. However, LI value is still higher than $1x10^{-3}$ and this indicates that mild steel corroded locally in microscopic point of view.

전기화학적 방법에 의한 타이타늄 분극특성 및 나노메쉬 형성 (Characteristics of titanium polarization curve and formation of nanomesh by electrochemical method)

  • 박진서;김부섭
    • 대한치과기공학회지
    • /
    • 제38권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Purpose: The aim of this study was to make nanomesh on the surface of titanium by potentiostatic technique which was done at the suitable potential level. Methods: In order to find the suitable potential level, use a $25^{\circ}C$ NaCl, NaOH and NH4F solution of 1 M and 5 M as supporting electrolyte, working electrode(positive potential) was contact to the titanium specimen and counter electrode(negative potential) was contact to the Pt substrate. At the transpassive potential which was observed by potentiostatic technique, potentiostatic technique was done for 2hours. Results: As a result, 1 M NaOH solution was suitable as a supporting electrolyte, potentiostatic technique used a $25^{\circ}C$ NaOH solution of 1 M for 2hours, nanomesh was formed. Conclusion: The potentiostatic technique was used $25^{\circ}C$ NaOH solution of 1 M and 5 M as supporting electrolyte for 2hours. Nanomesh was built more uniform and fine in 1 M NaOH solution than 5 M NaOH solution.

Electrochemical Study of Three Stainless Steel Alloys and Titanium Metal in Cola Soft Drinks

  • Peralta-Lopez, D.;Sotelo-Mazon, O.;Henao, J.;Porcayo-Calderon, J.;Valdez, S.;Salinas-Solano, G.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.294-306
    • /
    • 2017
  • Stainless steels and titanium alloys are widely used in the medical industry as replacement materials. These materials may be affected by the conditions and type of environment. In the same manner, soft drinks are widely consumed products. It is of interest for dental industry to know the behavior of medical-grade alloys when these are in contact with soft drinks, since any excessive ion release can suppose a risk for human health. In the present study, the electrochemical behavior of three stainless steel alloys and pure titanium was analyzed using three types of cola soft drinks as electrolyte. The objective of this study was to evaluate the response of these metallic materials in each type of solution (cola standard, light and zero). Different electrochemical techniques were used for the evaluation of the alloys, namely potentiodynamic polarization, linear polarization, and open-circuit potential measurements. The corrosion resistance of the stainless-steel alloys and titanium in the cola soft drinks was provided by the formation of a stable passive film formed by metal oxides. Scanning electron microscopy was used as a complementary technique to reveal corrosion phenomena at the surface of the materials evaluated.

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

  • Yu, Joonhee;Kim, Tae Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.274-281
    • /
    • 2017
  • This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.