• Title/Summary/Keyword: Electrochemical preparation

Search Result 364, Processing Time 0.031 seconds

Potential Dependence of Electrochemical Etching Reaction of Si(111) Surface in a Fluoride Solution Studied by Electrochemical and Scanning Tunneling Microscopic Techniques

  • Bae, Sang-Eun;Youn, Young-Sang;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.330-335
    • /
    • 2020
  • Silicon surface nanostructures, which can be easily prepared by electrochemical etching, have attracted considerable attention because of its useful physical properties that facilitate application in diverse fields. In this work, electrochemical and electrochemical-scanning tunneling microscopic (EC-STM) techniques were employed to study the evolution of surface morphology during the electrochemical etching of Si(111)-H in a fluoride solution. The results exhibited that silicon oxide of the Si(111) surface was entirely stripped and then the surface became hydrogen terminated, atomically flat, and anisotropic in the fluoride solution during chemical etching. At the potential more negative than the flat band one, the surface had a tendency to be eroded very slowly, whereas the steps of the terrace were not only etched quickly but the triangular pits also deepened on anodic potentials. These results provided information on the conditions required for the preparation of porous nanostructures on the Si(111) surface, which may be applicable for sensor (or device) preparation (Nanotechnology and Functional Materials for Engineers, Elsevier 2017, pp. 67-91).

AN ELECTROCHEMICAL STUDY ON MICROLEAKAGE OF RETROGRADE FILLING USING DIFFERENT RETROGRANE FILLING MATERIALS, ROOT RESECTION ANGLE AND CAVITY PREPARATION INSTRUMENTS (역충전재 및 치근단 절제 각도와 와동 형성 기구에 따른 역충전물의 변연 누출에 관한 전기화학적 연구)

  • Kim, Jin-Woo;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.499-512
    • /
    • 1994
  • The purpose of this study was to evaluate the microleakage electrochemically using different retrograde filling materials, different root resection angle, and different cavity preparation instruments. 104 extracted single-rooted teeth were selected for this study. 100 teeth were used as experimental groups and four was used as controls. Anatomical crowns were resected, root canals were prepared, and the apical 2 mm of roots were removed. The experimental roots were randomly divided into five equal groups. Experimental groups : Group 1. no bevel, cavity preparation with ultrasonic instruments, amalgam filling Group 2. no bevel, cavity preparation with ultrasonic instruments, SuperEBA cement filling Group 3. no bevel, cavity preparation with ultrasonic instruments, desiccated ZOE filling Group 4. $45^{\circ}$ bevel, cavity preparation with ultrasonic instruments, amalgam filling Group 5. no bevel, cavity preparation with conventional bur, amalgam filling Microleakage was measured once a day for 30 days using electrochemical method and were analyzed statistically. The results were as follows : 1. The group with Super EBA cement filling showed the least marginal leakage from second to fourth day(p<0.05), there was no significant difference between the group with amalgam filling during eighth to eighteenth day(p>0.05), but after the nineteenth day here was a higher marginal leakage than the group with amalgam filling(p<0.05). 2. The group with desiccated ZOE filling demostrated that the highest marginal leakage, started on the eighth day(p<0.05). 3. The group using ultrasonic instrument showed lower marginal leakage than the group using bur until the nineteenth day(p<0.05), but there was no significant differnce with the group using bur after twentythird day(p>0.05). 4. The group without bevel showed lower marginal leakage than the group with bevel (p<0.05). 5. Whether bevel or nor had much more effect on marginal leakage than with cavity perparation instrument when the cavity was retrogrdefilled with amalgam(stepwise regression).

  • PDF

Preparation and Electrochemical Characteristics of DAAQ/CNFs Composite electrode for Supercapacitor (DAAQ가 코팅된 슈퍼커패시터용 CNFs전극 활물질의 제조 및 전기 화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1226-1229
    • /
    • 2004
  • Supercapacitors, also known as electrochemical capacitors, are being extensively studied due to an increasing demand for energy-storage systems. These devices offer many advantages over conventional secondary batteries, which include the ability of fast charge propagation, long cycle-life and better storage efficiency. That is to say supercapacitor bridges the gap between conventional capacitors and batteries. A new type electric double layer capacitor (EDLC) also called supercapacitors. Recently, supercapacitors concerns about their high power density and energy density. So we experiment with EDLC by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. The electrode for supercapacitor was prepared by synthesis of DAAQ covered CNFs. CNFs could be covered with very thin DAAQ oligomer from the results of CV, XRD, DSC, SEM images, and TEM images. Dissolved electrode active material in NMP solution has been drop-coated on carbon plate. Its electrochemical characteristics were investigated by cyclic voltammograms. And compared with different electrolyte of aqueous type. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors with respect to specific capacity and scan rate dependency.

  • PDF

Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties (카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성)

  • Cho, Hong-Baek;Suh, Min-Ho;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors, acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts ($Mo_2C/CNT$), the size and the amount of supported catalysts could be controlled, and their effects on the electrochemical oxidation could be explained.