• Title/Summary/Keyword: Electrochemical polarization test

Search Result 209, Processing Time 0.025 seconds

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

An Evaluation of Degraded Damage for Superaustenitic Stainless Steel by Electrochemical Polarization Technique (전기화학기법에 의한 슈퍼 오스테나이트 스테인리스강의 열화손상 평가)

  • Kwon, Il-Hyun;Lee, Song-In;Baek, Seung-Se;Lee, Jong-Gi;Iino, Y.;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.143-148
    • /
    • 2001
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000hrs$. and investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain bounderies seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain bounderies and promote the current density observed in electrochemical polarization curves. The electrochemical and mechanical properties of superaustenitic stainless steel was drastically decreased in the specimen aged at $650^{\circ}C$.

  • PDF

Effect of Humidity on the Hydrogen Embrittlement of STS 444 Weld Zone for Boiler (보일러용 STS 444재 용접부의 수소취성에 미치는습기의 영향)

  • LIM, Uh-Joh;Choe, Byung-il;Yun, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • In order to examine the effect of humidity on hydrogen embrittlement of STS 444 weld zone for boiler with dry and wet welding conditions, this paper was carried out the accelerated hydrogen osmosis test and the electrochemical Tafel polarization test. In 0.5M $H_2SO_4$ + 0.01M $As_20_3$ solution, this test is added to load of $1400kg/cm^2$ together with hydrogen osmosis by current of $50 {mA/cm^2}$ for 60 min.. The electrochemical Tafel polarization test was carried out in 0.5M $H_2SO_4$ + 0.01M $As_20_3$ solution. Therefore, the effect of humidity on hydrogen embrittlement of STS 444 was considered. The main results are as following: On the basis of hydrogen embrittlement mechanism, that is, integrated electrochemical polarization characteristics with the established mechanism of hydrogen embrittlement, the reduction rate of corrosion current density of weld zone in the wet weld condition is larger than in the dry condition. We can nondestructively predict the degree of hydrogen embrittlement of STS 444 weld zone for boiler through the reduction rate of electrochemical corrosion current density.

The influence of impedance on micro electrochemical machining (마이크로 전해가공에서 임피던스의 영향)

  • 강성일;주종길;박규열;전종업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1893-1896
    • /
    • 2003
  • This research aimed to fabricate a micro structure using micro electrochemical machining (${\mu}$-ECM). with a view to that the theory of ${\mu}$-ECM is established accurately in a different way of conventional electrochemical machining. In details, if the impedance is existed in the system, it is difficult to analyze the micro electrochemical reaction efficiently in polarization curve using a potentiodynamic test. Hence, this research investigates the relationships between impedance and electric current measuring with a potentiostatic test applying to a pair or electrode as a constant potential. And this paper examines the influence of temperature of electrolyte on polarization curve for the quantitative analysis of electrochemical reactions.

  • PDF

An Nondestructive Evaluation of Degraded Damage for Superaustenitic Stainless Steel (슈퍼 오스테나이트 스테인리스강의 열화손상에 대한 비파괴적 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Iino, Y.;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1332-1339
    • /
    • 2002
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel and to detect the material degradation nondestructively. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000h$ and the mechanical properties were investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging on superaustenitic stainless steel was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain boundaries seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain boundaries and to promote the current density observed in electrochemical polarization curves, The electrochemical and mechanical properties of superaustenitic stainless steel decreased significantly in the specimen aged at $650^{\circ}C$ corresponding to the sensitization temperature for conventional austenitic stainless steels.

The Electrochemical Characteristics of Mercapto Compounds on the Copper Electroplating (전기구리도금에 미치는 Mercapto화합물의 전기화학적 특성)

  • Son Sang Ki;Lee Yoo Yong;Cho Byung Won;Lee Jae Bong;Lee Tae Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The eletrochemical charateristics of mercapto compound additives on the copper electroplating for semi conductor metalization were investigated. Mercapto compounds including sulfur atom is known that they activate deposition rate in eletroplating. Four different types of mercapto compounds were chosen with different concentration and both the characteristics of plating and throwing power were investigated by electrochemical experiments such as Hull cell test, Haring-Blum cell, cathodic polarization, EQCM(Electrochemical Quartz Crystal Microbalance). 3-Mercapto-1-propanesulfonic acid among 4 different mercapto compounds was regarded as the most proper activator with the results of the mass change of Cu metal deposited on eletrode by cathodic polarization and EQCM. The overpotential was more shifted to 100 mV in the concentration of 20 ppm than the solution with only $Cl^-$ in cathodic scan.

A study on the evaluation for material degradation of 0.0Cr-0.5Mo steel by a electrochemical polarization method (전기화학적 분극법에 의한 1.0Cr-0.5Mo강의 경년열화 평가에 관한 연구)

  • Na, Eui-Gyun;Kim, Hoon;Lee, Jong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • The contents of this paper include a non-destructive technique for evaluating the degradation of the boiler superheater tube in a fossil power plant through an electrochemical polarization test. Correlation between Ip of polarization parameter and SP-DBTT for the superheater tubes in long-term use was obtained. 1.0Cr-0.5Mo steel was degraded by softening, and the degree of degradation was dependent upon carbides with Cr and Mo elements. Since brittle fracture at low temperature and ductile fracture mode at high temperature were shown, similarity between standard Charpy and small punch tests could be found. In addition, SP-DBTT showing the degree of degradation was higher, as the time-in use of the materials got longer. Electrolyte including picric acid of 1.3 g in distilled water of 100ml at 25.deg. C temperature and sodium tridecylbenzene sulfonate with 1g could be applied to evaluate the degradation of 1.0Cr-0.5Mo steel by means of the electrochemical polarization test. Ip and Ipa values measured through the electrochemical test are the appropriate parameters for representing the degradation of the superheater tube(1.0Cr-0.5Mo steel) for the fossil power plant. It is poassible to evaluate the degradation of materials with different time histories electrochemically, by Ip value only, at field test.

Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System (인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구)

  • Park, Byung-Joon;Kim, Jung-Gu;Ahn, Seung-Ho;Kwak, Dong-Ho;Sohn, Hyun-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

Effect of Neodymium concentration on electrochemical properties of 925 silver (Ag925의 전기화학적 특성에 미치는 네오디뮴 함량의 영향)

  • Shin, Byung-Hyun;Jung, Seungjin;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • Ag925, silver with added copper, is popular alloy due to its low price. However, it has a difficult to use because of the low corrosion resistance. In various alloys, neodymium (Nd) works as an element to improve corrosion resistance by reacting with interstitial elements in the alloy. When 1.5 wt. % Neodymium was added to Ag925, the potential on the activated polarization in a potentiodynamic polarization test was increased from -0.15 V to -0.05 V. Ag925 with added neodymium showed the passivation after activation polarization. But When the potential increased around 50 mV, the current density is increased to 3 × 10-3. Ag925 with the 1.5 wt. % Nd had the low corrosion rate.

The Study on the Electrochemical Polarization Characteristics of Hydrogen Embrittlement for Ferrite Stainless Steel with Welding Conditions (용접조건에 따른 페라이트 스테인리스강에 대한 수소취성의 전기화학적 분극특성에 관한 연구)

  • Choi, Byung-Il;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.30-35
    • /
    • 2005
  • In order to examine the electrochemical polarization characteristics of hydrogen embrittlement far STS444 with welding conditions, this paper carried out the accelerated hydrogen osmosis test and the electrochemical polarization test. That is, in $0.5M\; H_2SO_4+0.001M\;As_2O_3$ solution, the hydrogen embrittlement behavior of STS444 added to load of $1,400kg/cm^2$ together with hydrogen osmosis by current of $30mA/cm^2$ far 60 min. was considered. In researching the electrochemical polarization characteristics of hydrogen embrittlement for STS444 with welding conditions, the previous study clarified that tensile strength or elongation became low influenced by absorption of oil or water before welding. In this paper, we proposed the advanced mechanism of hydrogen embrittlement that integrated electrochemical corrosion with the existing mechanism of hydrogen embrirtlement.

  • PDF