• Title/Summary/Keyword: Electrochemical polarization

Search Result 671, Processing Time 0.024 seconds

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium (적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근)

  • Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method

  • Ahn, SeungHo;Yoo, JiHong;Choi, YoonSeok;Kim, JungGu;Han, JeonGun
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.289-295
    • /
    • 2003
  • The corrosion behavior of Cr-N coated steels with different phases (${\alpha}-Cr$, CrN and $Cr_2N$) deposited by cathodic arc deposition on Hl3 steel was investigated in 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization test than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the $Cr_2N$ coating than in the other Cr-N coated steels. EIS measurements showed, for the most of Cr-N coated steels, that the Bode plot presented two time constants. Also, the $Cr_2N$ coating represents the characteristic of Warburg behavior after 72hr of immersion. The coating morphologies were examined in planar view and cross-section by SEM analyses and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, the CrN coating provided a better corrosion protection than the other Cr-N coated steels.

Analytical polarization curve of DMFC anode

  • Kulikovsky, A.A.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2013
  • A model for DMFC anode performance is developed. The model takes into account potential--independent methanol adsorption on the catalyst surface, finite rate of proton transport through the anode catalyst layer (ACL), and a potential loss due to methanol transport in the anode backing layer. An approximate analytical half--cell polarization curve is derived and equations for the anode limiting current density are obtained. The polarization curve is fitted to the curves measured by Nordlund and Lindbergh and parameters resulted from the fitting are discussed.

An Electrochemical Evaluation on the Corrosion Resistance of a Al Alloy (주조용 Al합금의 내식성에 관한 전기화학적 평가)

  • Youn Dae-Hyun;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.495-501
    • /
    • 2005
  • Al is a active metal that owes its resistance to a thin, protective, barrier oxide surface layer, which is stable in air and neutral aqueous solution. Thus Al alloys are widely used in architectural trim. cold & hot-water storage vessels and piping. However Al and most of its alloy may corrode with some forms such as pitting corrosion, intergranular corrosion and galvanic corrosion in the case of exposure to various industrial and marine atmosphere. Therefore a correct evaluation of corrosion resistance for their Al and Al alloys may be more important in a economical point of view. In this study. a relative evaluation of corrosion resistance for three kinds of Al alloys such as ALDC2, ALDC3, and ALDC8 series was carried out with electrochemical method. There is a tendency that corrosion potential is shifted to positive or negative direction by alloying components regardless of corrosion resistance. Moreover the data of corrosion properties obtained from cathodic Polarization curve, cyclic voltammogram and AC. DC impedance respectively showed a good correspondence each other against the corrosion resistance but variation of corrosion potential. passivity current density of anodic polarization curve and corrosion current density by Tafel extrapolation and Stern-Geary method didn't correspond with not only each other but also considerably the data of corrosion properties discussed above. Therefore it is suggested that an optimum electrochemical evaluation for corrosion resistance of Al alloy is to calculate the diffusion limiting current density of cathodic polarization curve, impedance of AC or DC and polarization resistance of cyclic voltammogram.

Mechanical and Electrochemical Characteristics in Welding with Robot on 6061-T6 Al Alloy for Al Ship (로봇으로 용접한 알루미늄 선박용 6061-T6 합금의 기계적, 전기화학적 특성)

  • Kim, Seong-Jong;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.313-321
    • /
    • 2009
  • The construction of fiber-reinforced plastic (FRP) boats is decreasing trend since the application of international regulations on the control of marine environmental pollution, which recommended the use of environmentally friendly materials. The aluminum alloy used with material for ship is a superior to FRP. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. However, the welding for Al alloy materials have many problems, such as deformation by welding heat and effect of the working environment. In this paper, it was carried out welding by robot with welding material of ER5183 and ER5556 on 6061-T6 Al alloy for ship. The mechanical and electrochemical characteristics evaluated for specimen welded by robot. The cathodic polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. The hardnesses of welding zone and heat affected zone are lower than that of base metal. At the result of tensile test, the specimen welded with ER5183 presented excellent property compared with ER5556.

Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy (ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성)

  • Park, Jae-Cheul;Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution (전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-169
    • /
    • 2022
  • The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.

Potential Difference of Cyclic Polarization Curve of an Aircraft Al Alloy: ∆E (Esec,corr - Ecorr)

  • Sun, Qingqing;Chen, Kanghua
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2020
  • This paper presents a hypothesis and its experimental validation that ∆E (Esec,corr - Ecorr) of cyclic polarization curve of an Al-Zn-Mg-Cu alloy decreases firstly and then increases with the increasing of corrosion rate or corroded fraction Fcorr of alloy surface. The minimum value of ∆E is obtained when Fcorr ≈ 50%. In addition, a proportional relationship between ∆E and |50% - Fcorr| was found. This non-monotonic relation between ∆E and extent of localized corrosion indicates that additional attention should be paid on using ∆E to assess localized corrosion behaviour of Al-Zn-Mg-Cu alloys.